Current location - Training Enrollment Network - Mathematics courses - Mathematical problems in the first volume of the first day of junior high school
Mathematical problems in the first volume of the first day of junior high school
(1) Fill in the blanks

3.3ab-4ab+8ab-7ab+ab=______。

4.7x-(5x-5y)-y=______。

5.23 a3 BC 2- 15 ab2c+8 ABC-24 a3 BC 2-8 ABC = _ _ _ _ _ _。

6.-7x 2+6x+ 13 x2-4x-5x 2 = _ _ _ _ _ _。

7.2y+(-2y+5)-(3y+2)=______。

1 1.(2 x2-3xy+4 y2)+(x2+2xy-3 y2)= _ _ _ _ _ _。

12.2 a-(3a-2 b+2)+(3a-4 b- 1)= _ _ _ _ _ _。

13.-6x2-7x2+ 15x2-2x2=______。

14.2 x-(x+3y)-(-x-y)-(x-y)= _ _ _ _ _ _。

16.2 x+2y-[3x-2(x-y)]= _ _ _ _ _ _。

17.5-( 1-x)- 1-(x- 1)= _ _ _ _ _ _。

18.()+(4xy+7x2-y2)= 10x2-xy。

19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3。

2 1. Given A=x3-2x2+x-4 and B=2x3-5x+3, calculate a+b = _ _ _ _.

22. given A=x3-2x2+x-4 and B=2x3-5x+3, calculate a-b = _ _ _ _.

23. If a=-0.2 and b=0.5, the value of the algebraic expression -(|a2b|-|ab2|) is _ _ _ _ _.

25. If a polynomial subtracts 3m4-m3-2m+5 to get -2m4-3m3-2m2- 1, then this polynomial is equal to _ _ _ _.

26.-(2 x2-y2)-[2 y2-(x2+2xy)]= _ _ _ _ _ _。

27. If -3a3b2 and 5ax- 1by+2 are similar terms, then x = _ _ _ _ _, and y = _ _ _ _ _.

28.(-y+6+3 y4-y3)-(2 y2-3 y3+y4-7)= _ _ _ _ _ _。

29. The result of simplifying the algebraic expression 4x2-[7x2-5x-3( 1-2x+x2)] is _ _ _ _.

30.2 a-B2+c-D3 = 2a+()-D3 = 2a-D3-()= c-()。

3 1.3a-(2a-3b)+3(a-2b)-b = _ _ _ _ _ _。

32. The simplified algebraic expression x-[y-2x-(x+y)] is equal to _ _ _ _.

33.[5a 2+()a-7]+[()a2-4a+()]= a2+2a+ 1。

34.3x-[y-(2x+y)]=______。

35.Simplify | 1-x+y |-x-y | (where x < 0, y > 0) equals _ _ _ _.

36. It is known that x≤y, x+y-| x+y-| x-y | = _ _ _ _ _

37. Given x < 0 and y < 0, simplify | x+y |-| 5-x-y | = _ _ _.

38.4a2n-an-(3an-2a2n)=______。

39. If you add -3x2y+2x2-3xy-4 to a polynomial, you get.

2x2y+3xy2-x2+2xy,

Then this polynomial is _ _ _ _.

40.-5xm-xm-(-7xm)+(-3xm)=______。

4 1. When a=- 1 and b=-2,

[a-(b-c)]-[-b-(-c-a)]=______。

43. When a=- 1, b= 1 and c=- 1,

-[b-2(-5a)]-(-3b+5c)=______。

44.-2(3x+z)-(-6x)+(-5y+3z)=______。

45.-5an-an+ 1-(-7an+ 1)+(-3an)= _ _ _ _ _ _。

46.3 a-(2a-4 b-6c)+3(-2c+2b)= _ _ _ _ _ _。

48.9 a2+[7 a2-2a-(-a2+3a)]= _ _ _ _ _ _。

50. When 2y-x=5, 5 (x-2y) 2-3 (-x+2y)-100 = _ _ _.

(2) Choose

[ ]

A.2

B.-2;

C.- 10;

D.-6.

52. In the following categories, the calculation result is -7x-5x2+6x3 [].

a . 3x-(5 x2+6 x3- 10x);

b . 3x-(5 x2+6 x3+ 10x);

c . 3x-(5 x2-6 x3+ 10x);

D.3x-(5x2-6x3- 10x)。

53. Combine (-x-y)+3(x+y)-5(x+y) into the same category [].

A.(x-y)-2(x+y);

B.-3(x+y);

C.(-x-y)-2(x+y);

D.3(x+y)。

54.2a-[3b-5a-(2a-7b)] equals []

A.-7a+ 10b;

b . 5a+4b;

C.-a-4b;

D.9a- 10b。

55. The algebraic expression that minus -3m equals 5m2-3m-5 is [].

a . 5(m2- 1);

b . 5m 2-6m-5;

c . 5(m2+ 1);

D.-(5m2+6m-5)。

56. The similar terms in the polynomial 2ab-9a2-5ab-4a2 are combined together respectively, which should be [].

A.(9 a2-4a 2)+(-2 ab-5ab);

B.(9 a2+4a 2)-(2ab-5ab);

C.(9 a2-4a 2)-(2ab+5ab);

D.(9a2-4a2)+(2ab-5ab)。

57. When a=2 and b= 1, -a2b+3ba2-(-2a2b) equals [].

A.20

B.24

C.0

D. 16。

The correct choice is []

A. there is no similar project;

B.(2) and (4) are similar projects;

C.(2) and (5) are similar projects;

D.(2) and (4) are not a category.

59. If both A and B are quintic polynomials, A-B must be [].

A. decagonal polynomial;

B. zeroth polynomial;

C. Polynomials with a degree not higher than five;

D. polynomial with degree less than five.

60.-{[-(x+y)]}+{-[(x+y)]} equals []

A.0

B.-2y;

c . x+y;

D.-2x-2y。

6 1. If A=3x2-5x+2 and B=3x2-5x+6, the sizes of A and B are

[ ]

A.a > B;

B.a = B;

C.a < B;

D. not sure.

62. When m=- 1, -2m2-[-4m2+(-m2)] equals [].

A.-7;

B.3

c . 1;

D2。

63. When m=2 and n= 1, the polynomial -m-[-(2m-3n)]+[-(-3m)-4n] is equal to [].

a . 1;

B.9

C.3

D.5

[ ]

65.-5an-an-(-7an)+(-3an) equals []

A.- 16an;

B.- 16;

C.-2an;

D.-2.

66.(5a-3b)-3 (a2-2b) is equal to []

a . 3 a2+5a+3b;

b . 2 a2+3b;

c . 2 a3-B2;

D.-3a2+5a-5b。

67.X3-5x2-4x+9 equals []

A.(x3-5 x2)-(-4x+9);

b . x3-5x 2-(4x+9);

C.-(-x3+5 x2)-(4x-9);

D.x3+9-(5x2-4x)。

[ ]

The result of 69.4x2y-5xy2 should be []

A.-x2y;

B.- 1;

C.-x2y 2;

D. None of the above answers are correct.

(3) simplification

70.(4x2-8x+5)-(x3+3x2-6x+2)。

72.(0.3x 3-x2y+xy2-y3)-(-0.5x 3-x2y+0.3 xy2)。

73.-{2a2b-[3abc-(4ab2-a2b)]}。

74.(5a2b+3a2b 2-ab2)-(-2ab 2+3a2b 2+a2b)。

75.(x2-2 y2-z2)-(-y2+3 x2-z2)+(5x 2-y2+2z 2)。

76.(3 a6-a4+2 a5-4 a3- 1)-(2-a+a3-a5-a4)。

77.(4a-2b-c)-5a-[8b-2c-(a+b)]。

78.(2m-3n)-(3m-2n)+(5n+m)。

79.(3 a2-4 ab-5 B2)-(2 B2-5a 2+2ab)-(-6ab)。

80.xy-(2xy-3z)+(3xy-4z)。

8 1.(-3x 3+2 x2-5x+ 1)-(5-6x-x2+x3)。

83.3x-(2x-4y-6x)+3(-2z+2y)。

84.(-x2+4+3x4-x3)-(x2+2x-x4-5)。

85. If A=5a2-2ab+3b2 and B=-2b2+3ab-a2, calculate a+b. 。

86. It is known that A=3a2-5a- 12, B=2a2+3a-4, and find 2 (a-b).

87.2m-{-3n+[-4m-(3m-n)]}。

88.5m2n+(-2m2n)+2mn2-(+m2n)。

89.4(x-y+z)-2(x+y-z)-3(-x-y-z)。

90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2)。

92.2(a2-a b-B2)-3(4a-2b)+2(7 a2-4a b+B2)。

94.4x-2(x-3)-3[x-3(4-2x)+8]。

(4) Simplify the following categories before evaluating.

97. Given a+b=2 and a-b=- 1, find the value of 3(a+b)2(a-b)2-5(a+b)2×(a-b)2.

98. It is known that A=a2+2b2-3c2, B=-b2-2c2+3a2, C=c2+2a2-3b2, and find (A-B)+C. 。

99.Find (3x2y-2x2y)-(xy2-2x2y), where x=- 1 and y = 2.

10 1. Given |x+ 1|+(y-2)2=0, find the value of algebraic expression 5(2x-y)-3(x-4y).

106. when P=a2+2ab+b2 and Q=a2-2ab-b2, find p-[q-2p-(p-q)].

107. Find the value of 2x2-{-3x+5+[4x2-(3x2-x=-3. 1)], where x =-3.

1 10. When x=-2, y=- 1 and z=3, find the value of 5XYZ-{2x2y-[3xXYZ-(4xy2-x2y)]}.

1 13. Given A=x3-5x2 and B=x2-6x+3, find a-3 (-2b).

(5) Comprehensive exercises

1 15. Remove the brackets: {-[-(a+b)]}-{-[-(a-b)]}.

1 16. Delete the brackets: -[-(-x)-y]-[+(-y)-(+x)].

1 17. Given A=x3+6x-9 and B=-x3-2x2+4x-6, calculate 2A-3B, and put the result in brackets with "-"in front.

1 18. Calculate the following formula and put the result in brackets with "-"in front:

(-7 y2)+(-4y)-(-y2)-(+5y)+(-8 y2)+(+3y)。

1 19. Remove the brackets, merge similar items, and arrange the results according to the ascending power of x, and put the last three items in brackets with "-":

120. Without changing the value of the following formula, change the symbol before each bracket to the opposite symbol: (x3+3x2)-(3x2y-7xy)+(2y3-3y2).

12 1. Put the cubic term of polynomial 4x2y-2xy2+4xy+6-x2y2+x3-y2 in brackets with "-"in front, the quadratic term in brackets with "+"in front, and the quartic term and constant term in brackets with "-"in front.

122. Remove the brackets of the following polynomials, combine similar terms, put them in brackets with "-"in front, and then find the value of 2x-2[3x-(5x2-2x+ 1)]-4x2, where x =- 1.

123. Merge similar projects:

7x- 1.3z-4.7-3.2x-y+2. 1z+5-0. 1y。

124. Merge similar items: 5m2n+5mn2-Mn+3m2n-6mn2-8mn.

126. Remove brackets and merge similar items:

( 1)(m+ 1)-(-n+m);

(2)4m-[5m-(2m- 1)]。

127. Simplified: 2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.

128. Simplification:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.

129. Calculation: (+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).

130. Simplification: a3-(a2-a)+(a2-a+1)-(1-a4+a3).

13 1. Combine the similar items of x2-8x+2x3- 13x2-2x-2x3+3 and evaluate them, where x =-4.

132. Fill in the appropriate items in brackets: [()-9y+()]+2y2+3y-4 =11y2-()+13.

133. Fill in the appropriate items in brackets:

(-x+y+z)(x+y-z)=[y-( )][y+( )]。

134. Fill in the appropriate items in brackets:

(3x2+xy-7y2)-( )=y2-2xy-x2。

135. Fill in the appropriate items in brackets:

( 1)x2-xy+y- 1 = x2-();

(2)[()+6x-7]-[4x 2+()-()]= x2-2x+ 1。

136. Calculate the value of 4x2-3 [x+4 (1-x)-x2]-2 (4x2-1).

137. Simplify:

138. Vertical calculation

(-x+5+2x4-6x3)-(3x4+2x2-3x3-7)。

139. a =11x3+8x2-6x+2, B=7x3-x2+x+3, and find 2 (3a-2b).

140. Given A=x3-5x2, B=x3- 1 1x+6, C=4x-3, find.

( 1)A-B-C;

(2)(A-B- China) -(A-B+ China).

14 1. Given A=3x2-4x3 and B=x3-5x2+2, calculate.

( 1)A+B;

(2)B-A。

142. Known x

146. Find the difference between two algebraic expressions-1.56a+3.2a3-0.47, 2.27a3-0.02a2+4.03a+0.53 and 6-0. 15a+3.24a2+5.07a3.

-0.3,y=-0.2。

150. Given (x-3)2+|y+ 1|+z2=0, find the value of x2-2xy-5x2+12xz+3xy-z2-8xz-2x2.