Zu Chongzhi's outstanding achievement in mathematics is about the calculation of pi. Before the Qin and Han Dynasties, people used "the diameter of three weeks a week" as pi, which was called "Gubi". Later, it was found that the error of Gubi was too large, and the pi should be "the diameter of a circle is greater than the diameter of three weeks". However, there are different opinions on how much is left. Until the Three Kingdoms period, Liu Hui put forward a scientific method to calculate pi-"secant" which approximated the circumference of a circle with the circumference inscribed by a regular polygon. Liu Hui calculated the circle inscribed with a 96-sided polygon and got π=3. 14, and pointed out that the more sides inscribed with a regular polygon, the more accurate the π value obtained. On the basis of predecessors' achievements, Zu Chongzhi devoted himself to research and repeated calculations. It is found that π is between 3. 14 15926 and 3. 14 15927, and the approximate value in the form of π fraction is obtained as the reduction rate and density rate, where the six decimal places are 3. 14 1929. There's no way to check now. If he tries to find it according to Liu Hui's secant method, he must work out 16384 polygons inscribed in the circle. How much time and labor it takes! It is obvious that his perseverance and wisdom in academic research are admirable. It has been more than 1000 years since foreign mathematicians obtained the same result in the secrecy rate calculated by Zu Chongzhi. In order to commemorate Zu Chongzhi's outstanding contribution, some mathematicians abroad suggested that π = be called "ancestral rate".
Zu Chongzhi exhibited famous works at that time and insisted on seeking truth from facts. He compared and analyzed a large number of materials calculated by himself, found serious mistakes in the past calendars, and dared to improve them. At the age of 33, he successfully compiled the Daming Calendar, which opened a new era in calendar history.
Zu Chongzhi and his son Zuxuan (also a famous mathematician in China) solved the calculation of the volume of a sphere with ingenious methods. They adopted a principle at that time: "If the power supply potential is the same, the products should not be different." That is to say, two solids located between two parallel planes are cut by any plane parallel to these two planes. If the areas of two sections are always equal, then the volumes of two solids are equal. This principle is based on the following points. However, it was discovered by Karl Marx more than 1000 years ago. In order to commemorate the great contribution of grandfather and son in discovering this principle, everyone also called this principle "the ancestor principle".