Current location - Training Enrollment Network - Mathematics courses - The national mathematics competition proved this point.
The national mathematics competition proved this point.
By reducing to absurdity, suppose any AI, AJ, (j >;; I) inequality aj-ai: I) both.

aj-ai & gt; = {( 1+ai)( 1+aj)}/ 10 10

Namely10/10 10 >;; =( 1+ai)( 1+aj)/(aj-ai)

(aj-ai)/(( 1+ai)( 1+aj))& gt; = 1/ 10 10

(( 1+aj)-( 1+ai))/(( 1+ai)( 1+aj))& gt; = 1/ 10 10

That is,1(1+ai)-1(1+aj) > =110.

Because for any AI, AJ, (j >;; I) The above formula holds, so there must be:

1/( 1+a 1)- 1/( 1+a2)>= 1/ 10 10

1/( 1+a2)- 1/( 1+a3)>= 1/ 10 10

......

1/( 1+a 20 10)- 1/( 1+a 20 10)>; = 1/ 10 10

***20 10 formula, two sides are added, and the direction of the unequal sign is unchanged, in which:

1/( 1+a 1)- 1/( 1+a 20 10)>= 1

1/( 1+a 1)>= 1/( 1+a20 10)>+ 1 & gt; 1

Therefore: 1+A 1

That is a 1 < 0.

This is similar to a1>; 0 is contradictory, so the original assumption is untenable, which means that there must be ai, aj, (I

aj-ai & lt; {( 1+ai)( 1+aj)}/ 10 10