Current location - Training Enrollment Network - Mathematics courses - Taier mathematics
Taier mathematics
Equation f(x)=x is x? +(b- 1)x+c=0

There are two real roots x 1x2.

∴x 1+x2= 1-b,x 1x2=c

∵x 1 & gt; 0,x2-x 1 & gt; 1

∴(x 1-x2)? =(x 1+x2)? -4x 1x 2 & gt; 1

That is (1-b)? -4c & gt; 1

∴b? -2 b+ 1 & gt; 4c+ 1

∴b? & gt2(b+2c)

(2)

According to the meaning of the question

f(x)-x=(x-x 1)(x-x2)

f(x)=x+(x-x 1)(x-x2)

f(t)-f(x 1)

=t+(t-x 1)(t-x2)-x 1

=(t-x 1)+(t-x 1)(t-x2)

=(t-x 1)( 1+t-x2)

∵t & lt; x 1

∴t-x 1<; 0

∵x2-x 1 & gt; 1

∴ 1-x2<; -x 1

∴ 1+t-x2<; t-x 1 & lt; 0

∴(t-x 1)( 1+t-x2)>; 0

That is, f (t)-f (x 1) >: 0

∴f(t)>; f(x 1)

I hope I can help you. If you don't understand, please ask.