There are two real roots x 1x2.
∴x 1+x2= 1-b,x 1x2=c
∵x 1 & gt; 0,x2-x 1 & gt; 1
∴(x 1-x2)? =(x 1+x2)? -4x 1x 2 & gt; 1
That is (1-b)? -4c & gt; 1
∴b? -2 b+ 1 & gt; 4c+ 1
∴b? & gt2(b+2c)
(2)
According to the meaning of the question
f(x)-x=(x-x 1)(x-x2)
f(x)=x+(x-x 1)(x-x2)
f(t)-f(x 1)
=t+(t-x 1)(t-x2)-x 1
=(t-x 1)+(t-x 1)(t-x2)
=(t-x 1)( 1+t-x2)
∵t & lt; x 1
∴t-x 1<; 0
∵x2-x 1 & gt; 1
∴ 1-x2<; -x 1
∴ 1+t-x2<; t-x 1 & lt; 0
∴(t-x 1)( 1+t-x2)>; 0
That is, f (t)-f (x 1) >: 0
∴f(t)>; f(x 1)
I hope I can help you. If you don't understand, please ask.