Calculating AC from Cosine Theorem
AC^2=AB^2+BC^2-2AB*BC*COS30
= 10^2+(4√3)^2-2* 10*4√3*√3/2
=28
AC =2√7
According to sine theorem:
BC/sinA=AC/sinB
sinA=BC*sinB/AC
=( 10* 1/2)/2√7
=5√7/ 14
In the right triangle APD (D is the vertical foot),
Sine of a = opposite side/adjacent side = 1/AP=5√7/ 14.
So AP=2√7/5
So CP=AC-AP
=2√7-2√7/5
=8√7/5