Make an equilateral △BCE in a square ABCD with a side length of 2,
∴AB=BC=CD=AD=BE=EC=2,∠ECB=60,∠ODC=45,
∴S△BEC= 12×2×3=3, s square =AB2=4,
Let GN=x,
∠∠NDG =∠NGD = 45,∠NCG=30,
∴DN=NG=x,CN=3NG=3x,
∴x+3x=2,
Solution: x=3- 1,
∴S△CGD= 12CD? GN = 12×2×(3- 1)= 3- 1,
Similarly: S△ABF=3- 1
∴S Shadow =S squared ABCD-s△ ABF-s△ BCE-s△ CDG = 4-(3-1)-3-(3-1) = 6-33.
So the answer is 6-33.