Current location - Training Enrollment Network - Mathematics courses - What are the mathematical equations in junior high school?
What are the mathematical equations in junior high school?
Equation is the foundation of junior high school mathematics, and students must master it firmly. I sorted out some important equations.

Discriminant b2-4ac=0. Note: The equation has two equal real roots.

B2-4ac >0, note that the equation has two unequal real roots.

B2-4ac & lt; 0, note that the equation has no real root, but a complex number of * * * yoke.

Perimeter formula junior high school perimeter formula is common in the following categories:

Rectangular perimeter = (length+width) ×2, C=2(a+b)

Square perimeter = side length ×4, C=4a

Circumference = diameter × π, C=2πr

Area formula The geometric area formula in junior high school is common in the following categories:

Rectangular area = length × width, S=ab

Square area = side length × side length, S=a?

Triangle area = base × height ÷2, S=ah/2.

Parallelogram area = base × height, S=ah

Trapezoidal area = (upper bottom+lower bottom) × height ÷2, s =1/2 (a+b) h.

Formulas of trigonometric functions 1, two-angle sum formula

sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/( 1-tanA tanB),tan(A-B)=(tanA-tanB)/( 1+tanA tanB)

ctg(A+B)=(ctgActgB- 1)/(ctg B+ctgA),ctg(A-B)=(ctgActgB+ 1)/(ctg B-ctgA)

2. Double angle formula

tan2A=2tanA/( 1-tan2A),ctg2A=(ctg2A- 1)/2ctga

cos2a = cos2a-sin2a = 2 cos2a- 1 = 1-2 sin2a

3. Half-angle formula

sin(A/2)=√(( 1-cosA)/2),ain(A/2)=-√(( 1-cosA)/2)

cos(A/2)=√(( 1+cosA)/2),cos(A/2)=-√(( 1+cosA)/2)

tan(A/2)=√(( 1-cosA)/(( 1+cosA)),tan(A/2)=-√(( 1-cosA)/(( 1+cosA))

ctg(A/2)=√(( 1+cosA)/(( 1-cosA)),ctg(A/2)=-√(( 1+cosA)/(( 1-cosA))

4. Sum-difference product

2sinAcosB=sin(A+B)+sin(A-B),2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B),-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB = 2 sin((A+B)/2)cos((A-B)/2,cosA+cosB = 2 cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB,tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB,-ctgA+ctgBsin(A+B)/sinAsinB

The above is my junior high school math formula, I hope I can help you.