Current location - Training Enrollment Network - Mathematics courses - The second day of the first volume of mathematics finale
The second day of the first volume of mathematics finale
Solution: (1) in δδABC and δδAEP.

∠∠ABC =∠AEP,∠BAC=∠EAP,

∴∠ACB=∠APE,

In ABC, AB=BC,

∴∠ACB=∠BAC,

∴∠epa=∠eap;

(2) Answer: □APCD is rectangular,

∵ Quadrilateral APCD is a parallelogram,

∴AC=2EA,PD=2EP,

∫from( 1)≈EPA =∠EAP,

∴EA=EP, then AC=PD,

∴□APCD is rectangular;

(3) a: EM=EN,

EA = EP,

∴∠EPA=90 -α,

∴∠eam= 180-∠EPA = 180-(90-α)= 90+α,

It can be known from (2) that ∠ CPB = 90, f is the midpoint of BC,

∴FP=FB,

∴∠FPB=∠ABC=α,

∴∠epn=∠epa+∠apn=∠epa+∠fpb=90-α+α= 90°+α,

∴∠EAM=∠EPN,

∠∠AEP rotates clockwise around point E by an appropriate angle to get ∠ ∠MEN,

∴∠AEP=∠MEN,

∴∠AEP-∠AEN=∠MEN-∠AEN,

That is ∠MEA=∠NEP,

∴δeam≌δepn,

∴EM=EN。