∠∠ABC =∠AEP,∠BAC=∠EAP,
∴∠ACB=∠APE,
In ABC, AB=BC,
∴∠ACB=∠BAC,
∴∠epa=∠eap;
(2) Answer: □APCD is rectangular,
∵ Quadrilateral APCD is a parallelogram,
∴AC=2EA,PD=2EP,
∫from( 1)≈EPA =∠EAP,
∴EA=EP, then AC=PD,
∴□APCD is rectangular;
(3) a: EM=EN,
EA = EP,
∴∠EPA=90 -α,
∴∠eam= 180-∠EPA = 180-(90-α)= 90+α,
It can be known from (2) that ∠ CPB = 90, f is the midpoint of BC,
∴FP=FB,
∴∠FPB=∠ABC=α,
∴∠epn=∠epa+∠apn=∠epa+∠fpb=90-α+α= 90°+α,
∴∠EAM=∠EPN,
∠∠AEP rotates clockwise around point E by an appropriate angle to get ∠ ∠MEN,
∴∠AEP=∠MEN,
∴∠AEP-∠AEN=∠MEN-∠AEN,
That is ∠MEA=∠NEP,
∴δeam≌δepn,
∴EM=EN。