BC = DE,∠BED=60
∴DE=2BE
∴BC=2BE, that is, point E is the midpoint of BC.
∠ ACB = 45。
∴AE⊥BC
∴AE∥BD
And BD=√3BE, AE=BE.
∴BD=√3AE
∴ad=ab+bd=ab+√3ae=ab+√3*( 1/2)*(ab+ac)
=[(2+√3)/2]AB+(√3/2)AC (vector coincidence is omitted in this step).
∴x=(2+√3)/2,y=√3/2
Used in △ABD, but vector BD is transformed into expressions of vector AB and vector AC.