Vector x+y=(2, a+b)
Derived from the vector norm inequality |x|+|y|≥|x+y|.
√( 1+a^2)+√( 1+b^2)≥√[2^2+(a+b)^2]
Divide both sides of inequality by 2.
[√( 1+a^2)+√( 1+b^2)]/2≥√{ 1+[(a+b)/2]^2}