1. Disc spring
circular cylindrical coordinates
Equation: r = 5
θ= t * 3600
z =(sin(3.5 *θ-90))+24 * t
2. Leaf line.
cartesian coordinate system
Equation: a= 10
x=3*a*t/( 1+(t^3))
y=3*a*(t^2)/( 1+(t^3))
3. Spiral curve
Cylindrical coordinates (cylindrical)
Equation: r=t
θ= 10+t *(20 * 360)
z=t*3
4. Butterfly curve
spherical coordinates
Equation: ρ= 8 * t
θ= 360 * t * 4
phi = -360 * t * 8
5. Progressive line
Using Cartesian coordinate system
Equation: r= 1
ang=360*t
s=2*pi*r*t
x0=s*cos(ang)
y0=s*sin(ang)
x=x0+s*sin(ang)
y=y0-s*cos(ang)
z=0
6. Spiral line.
Cartesian coordinates
Equation: x = 4 * cos (t *(5*360))
y = 4 * sin ( t *(5*360))
z = 10*t
7. Logarithmic curve
Cartesian coordinate system
Equation: z=0
x = 10*t
y = log( 10*t+0.000 1)
8. Spherical helix
Adopt spherical coordinate system
Equation: p = 4
θ= t * 180
φ= t * 360 * 20
9. Double arc epicycloid
Cartier coordinates
Equation: l=2.5
b=2.5
x=3*b*cos(t*360)+l*cos(3*t*360)
Y=3*b*sin(t*360)+l*sin(3*t*360)
Figure 9
10. Xinghang Line
Cartier coordinates
Equation: a=5
x=a*(cos(t*360))^3
y=a*(sin(t*360))^3
Figure 10
1 1. Health and emotional line
circular cylindrical coordinates
Equation: a= 10
r = a *( 1+cos(θ))
θ= t * 360
Figure 1 1
12. Spiral in the circle
Adopt cylindrical coordinate system
Equation: θ= t * 360
r = 10+ 10 * sin(6 * theta)
z = 2 * sin(6 *θ)
Figure 12
13. Sinusoidal curve
Cartesian coordinate system
Equation: x=50*t
y= 10*sin(t*360)
z=0
Figure 13
14. Solar line (this was originally made for other curves, but it turned out to be wrong, so it became like this).
15. Fermat curve (a bit like thread line)
Mathematical equation: r * r = a * a *
circular cylindrical coordinates
Equation 1:θ= 360 * t * 5.
a=4
r=a*sqrt(theta* 180/pi)
Equation 2:θ= 360 * t * 5
a=4
r=-a*sqrt(theta* 180/pi)
Because Pro/e can only make continuous curves, it can only be done twice.
16. Talbot curve
Cartier coordinates
Equation: θ= t * 360
a= 1. 1
b=0.666
c = sin(θ)
f= 1
x =(a * a+f * f * c * c)* cos(θ)/a
y =(a * a-2 * f+f * f * c * c)* sin(θ)/b
17.4 leaf line (made by equation, not copied)
18.Rhodonea curve
Using Cartesian coordinate system
Equation: θ= t * 360 * 4
x = 25+( 10-6)* cos(θ)+ 10 * cos(( 10/6- 1)*θ)
y = 25+( 10-6)* sin(θ)-6 * sin(( 10/6- 1)*θ)
19. parabola
Cartesian coordinates
Equation: x =(4 * t)
y =(3 * t) + (5 * t ^2)
z =0
20. Spiral line
circular cylindrical coordinates
Equation: r = 5
θ= t * 1800
z =(cos(θ-90))+24 * t
Figure 20
2 1. trilobal line
circular cylindrical coordinates
Equation: a= 1
θ= t * 380
b = sin(θ)
r = a * cos(θ)*(4 * b * b- 1)
Figure 2 1
22. Epicycloid
Duke coordinates
Equation: θ= t * 720 * 5.
b=8
a=5
x =(a+b)* cos(θ)-b * cos((a/b+ 1)*θ)
y =(a+b)* sin(θ)-b * sin((a/b+ 1)*θ)
z=0
23. Lissajous curve
θ= t * 360
a= 1
b= 1
c= 100
n=3
x = a * sin(n *θ+c)
y = b * sin(θ)
24. Long and short hypocycloids
Cartier coordinates
Equation: a=5
b=7
c=2.2
θ= 360 * t * 10
x =(a-b)* cos(θ)+c * cos((a/b- 1)*θ)
y =(a-b)* sin(θ)-c * sin((a/b- 1)*θ)
25. Long and short turnover lines
Cartier coordinates
Equation: θ= t * 360 * 10.
a=5
b=3
c=5
x =(a+b)* cos(θ)-c * cos((a/b+ 1)*θ)
y =(a+b)* sin(θ)-c * sin((a/b+ 1)*θ)
26. Tricuspid valve line
a= 10
x = a*(2*cos(t*360)+cos(2*t*360))
y = a*(2*sin(t*360)-sin(2*t*360))
27. Probability curve!
Equation:
Cartesian coordinates
x = t* 10-5
y = exp(0-x^2)
28. White tongue line
cartesian coordinate system
a = 1
x = -5 + t* 10
y = 8*a^3/(x^2+4*a^2)
Archimedes spiral.
Column coordinates
a= 100
θ= t * 400
r = a *θ
3 1. vine line
cartesian coordinate system
a= 10
y=t* 100-50
solve
x^3 = y^2*(2*a-x)
For x
32. Tangent curve
cartesian coordinate system
x = t*8.5 -4.25
y = tan(x*20)
33. Hyperbolic cosine
x = 6*t-3
y = (exp(x)+exp(0-x))/2
Figure 33
34. hyperbolic sine
x = 6*t-3
y = (exp(x)-exp(0-x))/2
Figure 34
35. Hyperbolic tangent
x = 6*t-3
y =(exp(x)-exp(0-x))/(exp(x)+exp(0-x))
36. One peak and three stagnation curves
x = 3*t- 1.5
y=(x^2- 1)^3+ 1
37. Eight-character curve
x = 2 * cos ( t *(2* 180))
y = 2 * sin ( t *(5*360))
z = 0
38. spiral
r = t *( 10 * 180)+ 1
θ= 10+t *(20 * 180)
z=t
circle
x = cos ( t *(5* 180))
y = sin ( t *(5* 180))
z = 0
40. Closed spherical encircling curve
ρ= 2
θ= 360 * t
phi=t*360* 10
4 1. Cylindrical coordinate spiral curve
x = 100 * t * cos(t *(5 * 180))
y = 100 * t * sin(t *(5 * 180))
z = 0
42. Serpentine curve
x = 2 * cos((t+ 1)*(2 * 180))
y = 2 * sin ( t *(5*360))
z = t*(t+ 1)
43.8 curve
Column coordinates
θ= t * 360
r= 10+(8*sin(theta))^2
44. Elliptic curve
Cartesian coordinate system
a = 10
b = 20
θ= t * 360
x = a * cos(θ)
y = b * sin(θ)
45. plum blossom curve
Column coordinates
θ= t * 360
r= 10+(3*sin(theta*2.5))^2
46. Another flower curve
θ= t * 360
r= 10-(3*sin(theta*3))^2
z=4*sin(theta*3)^2
47. Change to a flower curve with a stronger sense of space; )
θ= t * 360
r= 10-(3*sin(theta*3))^2
z=(r*sin(theta*3))^2
48. Spiral rising elliptic line
a = 10
b = 20
θ= t * 360 * 3
x = a * cos(θ)
y = b * sin(θ)
z=t* 12
49. Even this spiral flower curve.
θ= t * 360 * 4
r= 10+(3*sin(theta*2.5))^2
z = t* 16
50 drum line
Cartesian equation
r=5+3.3*sin(t* 180)+t
θ= t * 360 * 10
z=t* 10
5 1 long life locking curve:
Cartesian equation
a= 1*t*359.5
b=q2*t*360
c=q3*t*360
rr 1=w 1
rr2=w2
rr3=w3
x = RR 1 * cos(a)+rr2 * cos(b)+rr3 * cos(c)
y = RR 1 * sin(a)+rr2 * sin(b)+rr3 * sin(c)
52 hairpins
spherical coordinates
Equation:
ρ= 200 * t
θ= 900 * t
phi=t*90* 10
53. Spiral rising curve
r=t^ 10
theta=t^3*360*6*3+t^3*360*3*3
z=t^3*(t+ 1)
54. Mushroom curve
rho=t^3+t*(t+ 1)
θ= t * 360
phi=t^2*360*20*20
55.8 word curve
a= 1
b= 1
x=3*b*cos(t*360)+a*cos(3*t*360)
Y=b*sin(t*360)+a*sin(3*t*360)
56. Plum blossom curve
θ= t * 360
r= 100+50*cos(5*theta)
z=2*cos(5*theta)
57. Peach Curve
rho=t^3+t*(t+ 1)
θ= t * 360
phi=t^2*360* 10* 10
58. Name: Disc Spring
Establishing environment: pro/e
Cylindrical seat
r = 5
θ= t * 3600
z =(sin(3.5 *θ-90))+24
59. Circular conic curve
Cartesian equation:
x=50*cos(t*360)
y=50*sin(t*360)
z= 10*cos(t*360*8)
60 butterfly line
Spherical coordinates:
rho=4*sin(t*360)+6*cos(t*360^2)
θ= t * 360
phi=log( 1+t*360)*t*360
6 1. sine coil spring
Descartes:
ang 1=t*360
ang2=t*360*20
x=ang 1*2*pi/360
y=sin(ang 1)*5+cos(ang2)
z=sin(ang2)
62. Annular spiral
x =(50+ 10 * sin(t * 360 * 15))* cos(t * 360)
y =(50+ 10 * sin(t * 360 * 15))* sin(t * 360)
z= 10*cos(t*360*5)
63. Internal spring
x = 2 * cos(t * 360 * 10)+cos(t * 180 * 10)
y = 2 * sin(t * 360 * 10)+sin(t * 180 * 10)
z=t*6
64. Variable internal spring
x = 3 * cos(t * 360 * 8)- 1.5 * cos(t * 480 * 8)
y = 3 * sin(t * 360 * 8)- 1.5 * sin(t * 480 * 8)
z=t*8
65. Cylindrical sine wave line
Column coordinates:
equation
r=30
θ= t * 360
z = 5 * sin(5 *θ-90)
66. UFO (vortex line)
Spherical coordinates:
rho=t*20^2
θ= t * log(30)* 60
phi=t*7200
67. Handle curve
thta0=t*360
thta 1=t*360*6
r0=400
r 1=40
r=r0+r 1*cos(thta 1)
x=r*cos(thta0)
y=r 1*sin(thta 1)
z=0
basket
circular cylindrical coordinates
r=5+0.3*sin(t* 180)+t
θ= t * 360 * 30
z=t*5
69. Involute equation of cylindrical gear tooth profile;
afa=60*t
x = 10 * cos(AFA)+pi * 10 * AFA/ 180 * sin(AFA)
x = 10 * sin(AFA)-pi * 10 * AFA/ 180 * cos(AFA)
z=0
Note: afa is the pressure angle, ranging from 0 to 60, and 10 is the base circle radius.
70. Logarithmic spiral curve
Column coordinates:
r = sqrt(θ)
θ= t * 360 * 30
z=0
7 1. coverage line
Spherical coordinates:
ρ= 4
θ= t * 60
phi=t*360* 10
72. Sunflower Line
θ= t * 360
r = 30+ 10 * sin(θ* 30)
z=0
73. Sunline
r = 1.5 * cos(50 *θ)+ 1
θ= t * 360
z=0
74-tower spiral
r=t*80+50
θ= t * 360 * 10
z=t*80
75 petal line
Spherical coordinates:
ρ= t * 20
θ= t * 360 * 90
phi=t*360* 10
76 twin spindle production line
r=sin(t*360* 10)+30
θ= sin(t * 360 * 15)
z=sin(t*3)
Archimedean spiral's transformation (I want it)
I wonder if there is: what?
In cylindrical coordinates:
θ= 360 * 2 *(t-0.5)
r = 10 *θ
z=0
78 modified involute equation
r=20
ang = t*360
x=r*cos(ang)+2*pi*r*t*sin(ang)
y=r*sin(ang)-2*pi*r*t*cos(ang)
z=0
79 Pisces curve
spherical coordinates
rho = 30+ 10 * sin(t * 360 * 10)
θ= t * 180 * cos(t * 360 * 10)
φ= t * 360 * 30
80 arcuate curve
x=200*t*sin(t*3600)
y=250*t*cos(t*3600)
z=300*t*sin(t* 1800)
8 1 "two-sided" curve
spherical coordinates
ρ= 30
θ= t * 360 * cos(t * 360 * 20)
φ= t * 360 * 20
82 bees
Cartesian coordinate system:
x=cos(t*360)+cos(3*t*360)
Y=sin(t*360)+sin(5*t*360)
Meniscus 83
x=cos(t*360)+cos(2*t*360)
Y=sin(t*360)*2+sin(t*360)*2
84 tropical fish
a=5
x=(a*(cos(t*360*3))^4)*t
y=(a*(sin(t*360*3))^4)*t
85 dovetail shears
x=3*cos(t*360*4)
y=3*sin(t*360*3)
z=t
86 days silk
θ= t * 3600
r =(cos(360 * t * 20)* . 5 * t+ 1)* t
87 electrocardiogram
Cylindrical coordinate system:
r=sin(t*360*2)+.2
θ= 10+t *(6 * 360)
z=t*3
88 variable star line
Duke coordinate system
θ= t * 360
x= 10*cos(theta)^3
y= 10*sin(theta)^3
z = cos(θ)
89 rabbit
θ= t * 360-90
r=cos(360*(t/( 1+t^(6.5)))*6*t)*3.5+5
Hello, everybody!
θ= t * 360+ 180
r=cos(360*t^3*6)*2+5
9 1 serpentine
Cartesian coordinate system:
x=2*cos(t*360*3)*t
y=2*sin(t*360*3)*t
z=(sqrt(sqrt(sqrt(t))))^3*5
92 wuhuan
Column coordinates:
θ= t * 360 * 4
r=cos(t*360*5)+ 1
93 spider web
Column coordinates:
θ= t * 360 * 5
r=t*sin(t*360*25)*5+8
94 times sound wave
Descartes:
x=t*5
y=t*cos(t*360*8)
95 crossed involute
Column coordinates:
θ= t * 360 * 4
r =(cos(t * 360 * 16)* 0.5 * t+ 1)* t
96 inner five rings
Descartes
θ= t * 360 * 4
x = 2+( 10-5)* cos(θ)+6 * cos(( 10/6- 1)*θ)
y = 2+( 10-5)* sin(θ)-6 * sin(( 10/6- 1)*θ)
97 worm track
Column coordinates;
θ= t * 360 * 2
r=cos(t*360*30)*t*0.5+t*2