Current location - Training Enrollment Network - Mathematics courses - Formulas for solving junior high school math application problems
Formulas for solving junior high school math application problems
Tree planting problem

1 The problem of planting trees on unclosed lines can be divided into the following three situations:

(1) If trees are planted at both ends of the non-closed line, then:

Number of plants = number of nodes+1 = total length-1.

Total length = plant spacing × (number of plants-1)

Plant spacing = total length ÷ (number of plants-1)

2 If you want to plant trees at one end of the unclosed line and not at the other end, then:

Number of plants = number of segments = total length ÷ plant spacing

Total length = plant spacing × number of plants

Plant spacing = total length/number of plants

(3) If no trees are planted at both ends of the non-closed line, then:

Number of plants = number of nodes-1 = total length-1.

Total length = plant spacing × (number of plants+1)

Plant spacing = total length ÷ (number of plants+1)

The quantitative relationship of planting trees on the closed line is as follows

Number of plants = number of segments = total length ÷ plant spacing

Total length = plant spacing × number of plants

Plant spacing = total length/number of plants

The question of profit and loss

(Profit+Loss) ÷ Difference between two distributions = number of shares participating in distribution.

(Big profit-small profit) ÷ Difference between two distributions = number of shares participating in distribution.

(big loss-small loss) ÷ The difference between two distributions = the number of shares participating in the distribution.

encounter a problem

Meeting distance = speed × meeting time

Meeting time = meeting distance/speed and

Speed Sum = Meeting Distance/Meeting Time

Catch up with the problem

Catch-up distance = speed difference× catch-up time

Catch-up time = catch-up distance ÷ speed difference

Speed difference = catching distance ÷ catching time

Tap water problem

Downstream velocity = still water velocity+current velocity

Countercurrent velocity = still water velocity-current velocity

Still water velocity = (downstream velocity+countercurrent velocity) ÷2

Water velocity = (downstream velocity-countercurrent velocity) ÷2

Concentration problem

Solute weight+solvent weight = solution weight.

The weight of solute/solution × 100% = concentration.

Solution weight × concentration = solute weight

Solute weight-concentration = solution weight.

Profit and discount problem

Profit = selling price-cost

Profit rate = profit/cost × 100% = (selling price/cost-1) × 100%.

Up and down amount = principal × up and down percentage

Discount = actual selling price ÷ original selling price× 1 00% (discount <1)

Interest = principal × interest rate× time

After-tax interest = principal × interest rate × time × (1-20%)

Time unit conversion

1 century = 100 1 year =65438+ February.

The big month (3 1 day) includes:1\ 3 \ 5 \ 7 \ 8 \10 \ 65438+February.

Abortion (30 days) includes: April \ June \ September \165438+1October.

February 28th in a normal year and February 29th in a leap year.

There are 365 days in a normal year and 366 days in a leap year.

1 day =24 hours 1 hour =60 minutes.

1 min = 60s 1 hr = 3600s product = bottom area × height V=Sh Primary school mathematical formula:

1, the perimeter of the rectangle = (length+width) ×2 C=(a+b)×2.

2. The circumference of a square = side length ×4 C=4a.

3. Area of rectangle = length× width S=ab

4. Square area = side length x side length s = a.a = a.

5. Area of triangle = base × height ÷2 S=ah÷2.

6. parallelogram area = bottom x height S=ah

7. trapezoidal area = (upper bottom+lower bottom) × height ÷ 2s = (a+b) h ÷ 2.

8. Diameter = Radius× 2D = 2r Radius = Diameter ÷2 r= d÷2

9. The circumference of a circle = π× diameter = π× radius× 2c = π d = 2π r.

10, circular area = pi × radius× radius? =πr

1 1, the surface area of a cuboid = (length× width+length× height+width× height) × 2.

12, cuboid volume = length× width× height V =abh.

13, the surface area of the cube = side length × side length× ×6 S =6a.

14, volume of cube = side length x side length x side length v = a.a.a = a.

15, lateral area of cylinder = circumference of bottom circle × height S=ch.

16, surface area of cylinder = upper and lower bottom area+side area.

s = 2πr+2πRH = 2π(d÷2)+2π(d÷2)h = 2π(c÷2÷π)+Ch

17, cylinder volume = bottom area × height V=Sh

V=πr h=π(d÷2) h=π(C÷2÷π) h

18, volume of cone = bottom area × height ÷3.

v = sh÷3 =πr h÷3 =π(d÷2)h÷3 =π(c÷2÷π)h÷3

19, cuboid (cube, cylinder)

1, number of copies × number of copies = total number of copies/number of copies = total number of copies/number of copies = number of copies.

2. 1 multiple × multiple = multiple ÷ 1 multiple = multiple