In the process of growing up, young Gauss mainly paid attention to his mother and uncle. Gauss's grandfather was a stonemason who died of tuberculosis at the age of 30, leaving two children: Gauss's mother Luo Jieya and his uncle Flier. Flier Ritchie is smart, enthusiastic, intelligent and capable, and has made great achievements in textile trade. He found his sister's son clever, so he spent part of his energy on this little genius and developed Gauss's intelligence in a lively way. A few years later, Gauss, who was an adult and achieved great success, recalled what his uncle had done for him and felt that it was crucial to his success. He remembered his prolific thoughts and said sadly, "We lost a genius because of the death of our uncle". It is precisely because Flier Ritchie has an eye for talents and often persuades her brother-in-law to let her children develop into scholars that Gauss didn't become a gardener or a mason.
In the history of mathematics, few people are as lucky as Gauss to have a mother who strongly supports his success. Luo Jieya got married at the age of 34 and was 35 when she gave birth to Gauss. He has a strong personality, wisdom and sense of humor. Since his birth, Gauss has been very curious about all phenomena and things, and he is determined to get to the bottom of it, which is beyond the scope allowed by a child. When the husband reprimands the child for this, he always supports Gauss and resolutely opposes the stubborn husband who wants his son to be as ignorant as he is.
Luo Jieya sincerely hopes that his son can do something great and cherish Gauss's talent. However, he was afraid to put his son into mathematics research that could not support his family at that time. /kloc-when she was 0/9 years old, although Gauss had made many great achievements in mathematics, she still asked her friend W. Bolyai (the father of J. Bolyai, one of the founders of non-Euclidean geometry): Will Gauss have a future? W Bolyai said that her son would become "the greatest mathematician in Europe", and her eyes were filled with tears.
At the age of seven, Gauss went to school for the first time. Nothing special happened in the first two years. 1787 years old, Gauss 10. He entered the first math class. Children have never heard of such a course as arithmetic before. The math teacher is Buttner, who also played a certain role in the growth of Gauss.
A story that is widely circulated all over the world says that when Gauss was at 10, by adding all the integers from 1 to 100, he worked out the arithmetic problem that Butner gave to the students. As soon as Butner described the question, Gauss got the correct answer. However, this is probably an untrue legend. According to the research of E·T· Bell, a famous mathematical historian who has studied Gauss, Butner gave the children a more difficult addition problem: 81297+81495+81693+…+100899.
Of course, this is also a summation problem of arithmetic progression (the tolerance is 198 and the number of items is 100). As soon as Butner finished writing, Gauss finished the calculation and handed in the small tablet with the answers written on it. E. T. Bell wrote that in his later years, Gauss often liked to talk about this matter with people, saying that only his answer was correct at that time, and all the other children were wrong. Gauss didn't specify how he solved the problem so quickly. Mathematical historians tend to think that Gauss had mastered arithmetic progression's summation method at that time. For a child as young as 10, it is unusual to discover this mathematical method independently. The historical facts described by Bell according to Gauss's own account in his later years should be more credible. Moreover, it can better reflect the characteristics that Gauss paid attention to mastering more essential mathematical methods since he was a child.
Gauss's computing ability, mainly his unique mathematical methods and extraordinary creativity, made Butner sit up and take notice of him. He specially bought Gauss the best arithmetic book from Hamburg and said, "You have surpassed me, and I have nothing to teach you." Then Gauss and Bater's assistant Bater established a sincere friendship until Bater died. They studied together and helped each other, and Gauss began real mathematics research.
1788, 1 1 year-old gauss entered a liberal arts school. In his new school, all his classes are excellent, especially classical literature and mathematics. On the recommendation of Bater and others, the Duke of zwick summoned Gauss, who was 14 years old. This simple, clever but poor child won the sympathy of the Duke, who generously offered to be Gauss' patron and let him continue his studies.
Duke Brunswick played an important role in Gauss's success. Moreover, this function actually reflects a model of scientific development in modern Europe, indicating that private funding was one of the important driving factors for scientific development before the socialization of scientific research. Gauss is in the transition period of privately funded scientific research and socialization of scientific research.
1792, Gauss entered Caroline College in Brunswick for further study. 1795, the duke paid various expenses for him and sent him to the famous German family in G? ttingen, which made Gauss study hard and started creative research according to his own ideals. 1799, Gauss finished his doctoral thesis and returned to his hometown of Bren-Zwick. Just when he fell ill because he was worried about his future and livelihood-although his doctoral thesis was successfully passed, he was awarded a doctorate and obtained a lecturer position, but he failed to attract students and had to return to his hometown-the duke extended a helping hand. The Duke paid for the printing of Gauss's long doctoral thesis, gave him an apartment, and printed Arithmetic Research for him, so that the book could be published in 180 1. Also bear all the living expenses of Gauss. All this moved Gauss very much. In his doctoral thesis and arithmetic research, he wrote a sincere dedication: "To Dagong" and "Your kindness relieved me of all troubles and enabled me to engage in this unique research".
1806, the duke was killed while resisting the French army commanded by Napoleon, which dealt a heavy blow to Gauss. He is heartbroken and has long been deeply hostile to the French. The death of Dagong brought economic difficulties to Gauss, the misfortune that Germany was enslaved by the French army, and the death of his first wife, all of which made Gauss somewhat disheartened, but he was a strong man and never revealed his predicament to others, nor did he let his friends comfort his misfortune. It was not until19th century that people knew his state of mind at that time when sorting out his unpublished mathematical manuscripts. In a discussion of elliptic functions, a subtle pencil word was suddenly inserted: "For me, it is better to die than to live like this."
The generous and kind benefactor died, and Gauss had to find a suitable job to support his family. Because of Gauss's outstanding work in astronomy and mathematics, his fame spread all over Europe from 1802. The Academy of Sciences in Petersburg has continuously hinted that since Euler's death in 1783, Euler's position in the Academy of Sciences in Petersburg has been waiting for a genius like Gauss. When the Duke was alive, he strongly discouraged Gauss from going to Russia. He is even willing to raise his salary and set up an observatory for him. Now, Gauss is facing a new choice in life.
In order not to lose Germany's greatest genius, B.A. von von humboldt, a famous German scholar, joined other scholars and politicians to win Gauss the privileged positions of professor of mathematics and astronomy at the University of G? ttingen and director of the G? ttingen Observatory. 1807, Gauss went to Kottingen to take office, and his family moved here. Since then, he has lived in G? ttingen except for attending a scientific conference in Berlin. The efforts of Humboldt and others not only made the Gauss family have a comfortable living environment, but also enabled Gauss himself to give full play to his genius, and created conditions for the establishment of Gottingen Mathematics School and Germany to become a world science center and mathematics center. At the same time, it also marks a good beginning of scientific research socialization.
Gauss's academic position has always been highly respected by people. He has the reputation of "prince of mathematics" and "king of mathematicians" and is considered as "one of the three (or four) greatest mathematicians in human history" (Archimedes, Newton, Gauss or Euler). People also praised Gauss as "the pride of mankind". Genius, precocity, high yield, persistent creativity, ..., almost all the praises in the field of human intelligence are not too much for Gauss.
Gauss's research field covers all fields of pure mathematics and applied mathematics, and has opened up many new fields of mathematics, from the most abstract algebraic number theory to intrinsic geometry, leaving his footprints. Judging from the research style, methods and even concrete achievements, he is the backbone of 18- 19 century. If we imagine mathematicians in the18th century as a series of high mountains, the last awe-inspiring peak is Gauss; If mathematicians in the19th century are imagined as rivers, then their source is Gauss.
Although mathematical research and scientific work did not become an enviable career at the end of 18, Gauss was born at the right time, because the development of European capitalism made governments around the world pay attention to scientific research when he was close to 30 years old. With Napoleon's emphasis on French scientists and scientific research, Russian czars and many European monarchs began to look at scientists and scientific research with new eyes. The socialization process of scientific research is accelerating and the status of science is improving. As the greatest scientist at that time, Gauss won many honors, and many world-famous scientists regarded Gauss as their teacher.
1802, Gauss was elected as an academician of communication and a professor of Kazan University by the Academy of Sciences in Petersburg, Russia. 1877, the Danish government appointed him as a scientific adviser, and this year, the government of Hanover, Germany also hired him as a government scientific adviser.
Gauss's life is a typical scholar's life. He has always maintained the frugality of a farmer, making it hard to imagine that he is a great professor and the greatest mathematician in the world. He was married twice, and several children annoyed him. However, these have little influence on his scientific creation. After gaining a high reputation and German mathematics began to dominate the world, a generation of Tianjiao completed the journey of life.