Current location - Training Enrollment Network - Mathematics courses - Who knows some interesting math stories? Thank you, everyone.
Who knows some interesting math stories? Thank you, everyone.
1, butterfly effect meteorologist Lorenz put forward a paper entitled "Will butterflies flap their wings to cause tornadoes in taxonomic groups?" This paper discusses that if the initial condition of a system is a little worse, its result will be very unstable. He called this phenomenon "the butterfly effect". Just like we roll the dice twice, no matter how deliberately we roll, the physical phenomena and points thrown twice are not necessarily the same. Why did Lorenz write this paper? This story happened in the winter of 196 1 2008. He operated the meteorological computer in the office as usual. Usually, he only needs to input meteorological data such as temperature, humidity and air pressure, and the computer will calculate the possible meteorological data at the next moment according to the built-in three differential equations, thus simulating the meteorological change map. On this day, Lorenz wanted to know more about the subsequent changes of a record. He re-entered the meteorological data at a certain moment into the computer, so that the computer could calculate more subsequent results. At that time, the speed of computer processing data was not fast enough, so he had time to have a cup of coffee and chat with his friends for a while before the results came out. An hour later, the result came out, but he was dumbfounded. Compared with the original information, the original data is similar, and the later data is more different, just like two different pieces of information. The problem is not the computer, but the data he entered is 0.0005438+027. These subtle differences make a world of difference. So it is impossible to accurately predict the weather for a long time. References:

Cao Cao's Gourd (Volume II)-Yuan Zhe Science Education Foundation II. The mathematical "genius" hive in animals is a strict hexagonal cylinder with a flat hexagonal opening at one end and a closed hexagonal diamond bottom at the other end, which consists of three identical diamonds. The rhombic obtuse angle of the chassis is 109 degrees 28 minutes, and all acute angles are 70 degrees 32 minutes, which is both firm and material-saving. The honeycomb wall thickness is 0.073 mm, and the error is very small. Red-crowned cranes always move in groups, forming a "human" shape. The angle of the herringbone is 1 10 degrees. More accurate calculation also shows that half the angle of the herringbone-that is, the angle between each side and the direction of the crane group is 54 degrees, 44 minutes and 8 seconds! And the angle of diamond crystal is exactly 54 degrees, 44 minutes and 8 seconds! Is it a coincidence or some "tacit understanding" of nature? The spider's "gossip" net is a complex and beautiful octagonal geometric pattern, and it is difficult for people to draw a symmetrical pattern similar to a spider's net even with the compass of a ruler. In winter, when a cat sleeps, it always hugs its body into a ball. There is also mathematics in it, because the shape of the ball minimizes the surface area of the body, so it emits the least heat. The real "genius" of mathematics is coral. Coral writes a "calendar" on its body, and "draws" 365 stripes on its wall every year, apparently one a day. Strangely, paleontologists found that corals 350 million years ago "painted" 400 watercolors every year. Astronomers tell us that at that time, the earth only had 2 1.9 hours a day, not 365 days a year, but 400 days. (