Let the side length of the square in the graph be a, that is, AB=BC=CD=DE=a, which is obtained by Pythagorean theorem: AC= root number 2 * A.
△ACD and△ ACE, the corresponding angle ∠ACD=∠ACE,
The edge CD of △ACD corresponds to the edge AC in △ACE, and the edge AC in △ACD corresponds to the edge CE in △ACE.
Corresponding edge AC/CD= radical number 2*a/a= radical number 2, CE/AC=2a/ radical number 2*a= radical number 2,
So AC/CD=CE/AC, and ∠ACD=∠ACE, you get △ACD∽△ECA.
(2) If ∠ 1 = 45, ∠ ACD = 135 and ∠ 3+∠ CAE = 45 in square ABCH,
From △ACD∽△ECA, ∠2=∠CAE, ∠3=∠CAD,
Then ∠ 3+∠ CAE = ∠ 3+∠ 2 = 45, so ∠ 1+∠ 2+∠ 3 = 90.