Expand AD to e, make ED=AD, connect BE,
In △BDE and △CDA,
BD=CD,∠BDE=∠CDA,ED=AD,
∴△BDE≌△CDA(SAS),
∴BE=AC,
In △ Abe,
∵ ab+be > AE (the sum of two sides of a triangle is greater than the third side),
∴AB+AC>2AD
2、
BE=AC=3,AB=5
In △ Abe,
∫a B- BE < AE < a b+BE,
∴5-3