=∫e^sinxsinxdsinx
=∫sinxde^sinx
=e^sinx*sinx-∫e^sinxdsinx
=e^sinx*sinx-e^sinx+C
(2) Two-sided derivation:
xf(x)= 1/√( 1-x? )
Then: f (x) =1/kx (1+x 2)-2dx.
= k/2∫( 1+x^2)^-2d( 1+x^2)
=-k/2* 1/( 1+x^2)
=k/2-k/ 10
=2k/5
=32
k=80