( 1)cos∠ADC = 1/7 ,sin∠adc=√ 1-(cos∠adc)^2]=4√3/7
sin∠ADB=sin∠ADC=4√3/7
cos∠ADB=-cos∠ADC=- 1/7
sin∠BAD = sin( 180-∠ABD-∠ADB)= sin(2π/3-∠ADB)=√3/2 cos∠ADB+ 1/2 sin∠ADB
=√3/2*(- 1/7)+ 1/2*4√3/7
=3√3/ 14
So sin ∠ bad =1114.
(2)AB/sin∠ADB=BD/sin∠BAD
BD =(AB * sin∠BAD)/sin∠ADB =(8 * 3√3/ 14)/(4√3/7)= 3
BD=3
(3)BC=BD+CD=3+2=5
ac^2=ab^2+bc^2-2ab*bccosπ/3=8^2+5^2-2*8*5=9
AC=3
Namely: sin ∠ bad =114, BD = 5, AC = 3.
two
( 1):(b-2a)cosC+ccosB=0
From sine theorem:
(sinB-2sinA)cosC+sinCcosB=0
sinCcosB+sinBcosC-2sinAcosC=0
sin(C+B)-2sinAcosC=0
sinA-2sinAcosC=0
Sina is not 0.
1-2 cos = 0
cosC= 1/2
C=π/3
(2)c^2=a^2+b^2-2abcosπ/3
a^2+b^2-ab=c^2
a^2+(3a)^2-3a*a=(√7)^2
A= 1 or a=- 1 (omitted)
a= 1,b=3a=3
s = 1/2 absinπ/3 = 1/2 * 1 * 3 *√3/2 = 3 √/ 4
S=3√/4
three
2asinA=(2b+c)sinB+(2c+b)sinC
From sine theorem:
2a^2=b(2b+c)+c(2c+b)
2a^2=2b^2+bc+2c^2+bc
a^2=b^2+c^2+bc
b^2+c^2-a^2=-bc
cosa=(b^2+c^2-a^2)/2bc=-bc/2bc=- 1/2
cosA=- 1/2
A=2π/3