Current location - Training Enrollment Network - Mathematics courses - Advanced Mathematics Volume II Tongji Edition
Advanced Mathematics Volume II Tongji Edition
z'x=-2x,z'y=-2y

Let the tangent point be (a, b, 2-a? -B? )

The normal vector at the tangent point is

(2a,2b, 1)

Therefore, the tangent plane equation is

2a(x-a)+2b(y-b)+(z-2+a? +b? )=0

Namely: 2ax+2by+z=2+a? +b?

Let y=z=0 and the solution is

x=(2+a? +b? )/(2a)

Let x=z=0, and the solution is

y=(2+a? +b? )/(2b)

Let x=y=0, and the solution is

z=2+a? +b?

Therefore, the intersection of the tangent plane and the three coordinate axes is

((2+a? +b? )/(2a),0,0)

(0,(2+a? +b? )/(2b),0)

(0,0,2+a? +b? )

So, the volume of the tetrahedron is

V= 1/3× 1/2×(2+a? +b? )/(2a)

×(2+a? +b? )/(2b)×(2+a? +b? )

= 1/24×(2+a? +b? )? /(ab)

Let g(a, b)=(2+a? +b? )? /(ab)

g'a=(2+a? +b? )? (5a? -2-b? )/(a? b)

g'b=(2+a? +b? )? (5b? -2a? )/(a? b)

Let g'a=g'b=0.

Solution, a=b=√2/2.

∴ The tangent point is (√2/2, √2/2, 1).