Let the tangent point be (a, b, 2-a? -B? )
The normal vector at the tangent point is
(2a,2b, 1)
Therefore, the tangent plane equation is
2a(x-a)+2b(y-b)+(z-2+a? +b? )=0
Namely: 2ax+2by+z=2+a? +b?
Let y=z=0 and the solution is
x=(2+a? +b? )/(2a)
Let x=z=0, and the solution is
y=(2+a? +b? )/(2b)
Let x=y=0, and the solution is
z=2+a? +b?
Therefore, the intersection of the tangent plane and the three coordinate axes is
((2+a? +b? )/(2a),0,0)
(0,(2+a? +b? )/(2b),0)
(0,0,2+a? +b? )
So, the volume of the tetrahedron is
V= 1/3× 1/2×(2+a? +b? )/(2a)
×(2+a? +b? )/(2b)×(2+a? +b? )
= 1/24×(2+a? +b? )? /(ab)
Let g(a, b)=(2+a? +b? )? /(ab)
g'a=(2+a? +b? )? (5a? -2-b? )/(a? b)
g'b=(2+a? +b? )? (5b? -2a? )/(a? b)
Let g'a=g'b=0.
Solution, a=b=√2/2.
∴ The tangent point is (√2/2, √2/2, 1).