normal solution
y = 1/a+4/b =( 1/a+4/b)* 1
=( 1/a + 4/b)* [(a+b)/2]
= 1/2 *[ 1+b/a+4a/b+4]
= 1/2*[b/a+4a/b+5]
≥ 1/2 * [2 √ (b/a*4a/b)+5] ... Note that b/a * 4a/b is a fixed value here. 4. The conditions are met.
=9/2
When b/a=4a/b, we get an equal sign, a=2/3 and b=4/3.
Basic attribute
(1) if x>y, then y < x;; If y
2 If x>y, y & gtz;; Then x & gtz;; (transitivity).
③ if x>y and z is any real number or algebraic expression, then x+z >; y+z; (addition principle, or additivity of inequality in the same direction).
4 If x>y, z>0, then xz & gtyz;; If x>y, z<0, and then xz.
⑤ If x>y, m>n, then X+M > y+n; (Sufficiently unnecessary condition).