=[x^5/5]<; 0, 1 & gt; +( 1/ln3)[x 3^x]<; 0, 1 & gt; -( 1/ln3)∫& lt; 0, 1 & gt; 3^xdx
+( 1/3)[x e^(3x)]<; 0, 1 & gt; -( 1/3)∫& lt; 0, 1 & gt; e^(3x)dx
= 1/5+3/ln3-[ 1/(ln3)^2][3^x]<; 0, 1 & gt; +e^3/3-( 1/9)[e^(3x)]<; 0, 1 & gt;
= 1/5+3/ln3-2/(ln3)^2+e^3/3-( 1/9)(e^3- 1)
= 14/45+3/ln3-2/(ln3)^2+2e^3/9
2 1. Divide both sides of the differential equation by cosxcosy, and you get
tanydy = tanxdx,- ln(cosy) = - ln(cosx) - lnC
Cosy = Ccosx,y(0) = π/4。
C = 1/√2, then the special solution is cosy = (1√ 2) cosx.