So AB=AC
Angle BAC=90 degrees
AD=AE
Angle DAE=90 degrees
Because angle BAD= angle BAC+ angle CAD = 90°+ angle CAD.
Angle CAE= Angle DAE+ Angle CAD = 90°+ Angle CAD
So bad angle = angle CAE
So triangle bad and triangle CAE congruence (SAS)
So BD=CE
(2) Proof: Because triangle BAD and triangle CAE are congruent (proved)
So angle ABM= angle ACM
Because angle ABM+ angle BAC+ angle ANB= 180 degrees.
So angle ACM+ angle ANB=90 degrees.
Because angle ANB= angle CMM
So angle ACM+ angle CNM=90 degrees.
Because angle ACM+ angle CNM+ angle CMN= 180 degrees.
So CMN angle =90 degrees.
So BD is perpendicular to CE.
(3) The conclusion is still valid.
The proof graph 1:: prolongs the intersection of DB and CE in F.
Because triangle ABC and triangle ADE are isosceles right triangles
So AB=BC
Angle EAC= angle BAD90 degrees
AD=AE
So triangle EAC and triangle BAD are congruent (SAS)
So BD=CE
Angle ACE= angle ABD
Because angle ABD= angle EBF
So angle ACE= angle EBF
Because angle EAC+ angle ACE+ angle FEB= 180 degrees.
So angle FEB+ angle EBF=90 degrees.
Because angle FEB+ angle EBF+ angle EFB= 180 degrees.
So EFB angle =89 degrees.
So BD is perpendicular to CE.