S2= 1+ 1/2? + 1/3?
…
Sn= 1+ 1/n? + 1/(n+ 1)?
Split the right side of Sn
Sn=[n? (n+ 1)? +(n+ 1)? +n? ]/[n? (n+ 1)? ]
=[n? (n+ 1)? +2n(n+ 1)+ 1]/(n? (n+ 1)? ]
=[n(n+ 1)+ 1]? /[n? (n+ 1)? ]
∴√sn=[n(n+ 1)+ 1]/[n(n+ 1)]
= 1+ 1/[n(n+ 1)]
= 1+ 1/n- 1/(n+ 1)
∴ S=√S 1+√S2+…+√Sn。
=( 1+ 1/ 1- 1/2)+( 1+ 1/2- 1/3)+( 1+ 1/3- 1/4)+........+[ 1+ 1/n- 1/(n+ 1)]
= n+[ 1- 1/2+ 1/2- 1/3+ 1/3- 1/4+。 ......+ 1/n- 1/(n+ 1)]
= n+ 1- 1/(n+ 1)=[(n+ 1)? - 1]/(n+ 1)=(n? +2n)/(n+ 1)