∠ACB = 180-∠BAC-∠ABC = 180-48-58-30 = 44
Let AB=AD= 1,
Sine theorem:
AB/sinACB=AC/sinABC,
AC = ABsinABC/Sina CB = 1×sin(58+30)/sin 44 = sin 88/sin 44 = 2cos 44
Cosine theorem:
CD? =AC? +AD? -2AC。 ADC cosdac
=4cos? 44 + 1-2×2cos44 cos 16
= 4 cos 44(cos 44-cos 16)+ 1
=-8cos 44 sin 30 sin 14+ 1
=-4cos44 sin 14 + 1
=-2[sin58 -sin30 ]+ 1
=2-2sin58
2( 1-sin58 )=2(sin? 29 -2sin29 cos29 +cos? 29 )=2(cos29 -sin29)?
CD =√2(cos 29-sin 29)= 2(sin 45 cos 29-cos 45 sin 29)= 2 sin 16
Sine theorem:
CD/sin 16 =AD/sinACD
Sina CD = adsin 16/CD = sin 16/2 sin 16 = 1/2,
∠ACD=30