The derivative of this function is: g' (x) = 2 (5-x 2) (-2x)-4x = 4x (x 2-6) = 4x (x+6 (1/2)) (x-6 (1/2))
Discussion: In 4 consecutive time intervals:
1.(- infinity, -6 (1/2)],
g '(x)& lt; 0,
Function monotonically decreases.
2.x=-6^( 1/2),g'(x)=0
Minimum value.
3.(-6^( 1/2),0]
,
g′(x)>0,
Function monotonically increases.
4.x=0, g'(x)=0 maximum.
5.(0,6^( 1/2)]
,
g '(x)& lt; 0,
Function monotonically decreases.
6.x = 6 (1/2), and g' (x) = 0 minimum.
7.(6 (1/2), positive infinity], g'(x)>0,
Function monotonically increases.