S△ABP=AB×PM/2,S△BPC=BC×PN/2,
∴S△ABP/S△BPC=AB/BC=30/23
(2)AOD =∠AOE
Proof: ∠ DAC = ∠ DAB+∠ BAC, = 60+∠ BAC, ∠ BAE = ∠ EAC+∠ BAC = 60+∠ BAC,
∴∠DAC=∠BAE,AD=AB,AC=AE,∴△DAC? △BAE(SAS),∴∠ACD=∠AEB,
Let AC be q, ∠ AQE = ∠ OQC, ∠ EAQ =180-(∠ AQE+∠ AEB),
∠cbq = 180 -(∠oqc+∠acd),∴∠coq=∠eaq=60,
If OF=OC is intercepted on OE, △OCF is an equilateral triangle, ∴ Co = CF, ∠ OCF = ∠ ACE = 60,
So ∠ OCA+∠ QCF = ∠ FCE+∠ QCF, ∴∠ OCA = ∠ FCE, AC = EC, ∴△ OCA? △FCE(SAS)、
∴∠aoc=∠efc= 180-60= 120 ,∴∠aoe= 120-60=60,
Similarly, it can be proved that ∠ AOD = 60, ∴∠ AOD = ∠ AOE.
Using a four-point * * * circle is simple: ∴△DAC? △BAE(SAS),∴∠ACD=∠AEB,∴AECO four-point * * cycle,
∴∠ AOE =∠ ACE = 60, likewise ∠ AOD =∠ Abd = 60, ∴∠ AOD = ∠ AOE.
(3)∠ABC≦ADC diagram (3)
Even BD,∵BC=DC,∴∠CBD=∠CDB, if ab & gtAD, then ∠ ADB > ∠ABD,
∴∠adb+∠cdb>; ∠ABD+∠CBD, then ∠ ADC >; ∠ABC,
If ab
[diagonal AC bisects ∠BAD, which is of little significance for judging the quantitative relationship between ∠B and ∠D]