1)
x=0,g(x)=a
X≠0, g(x)=f(x)/x, f(0)=0, g(x) can be governed by L'H?pital's law:
lim(x→0) g(x)
=lim(x→0) f(x)/x
=lim(x→0) f'(x)/ 1
=f'(0)
=0
G(x) is continuous, then g(0)=a=0.
So: a=0
2)
x≠0,g'(x)=f'(x)/x-f(x)/x? =[xf'(x)-f(x)]/x?
lim(x→0) g'(x)
=lim(x→0) [xf'(x)-f(x)]/x? Apply L'H?pital's law
= lim(x→0)[f '(x)+xf ' '(x)-f '(x)]/(2x)
=lim(x→0) f''(x)/2
=f''(0)/2
So: g(x) has a first-order continuous derivative.