=[(x- 1)e^x+ 1]/x^2,
Let h (x) = (x- 1) e x+ 1, then
h'(x)=xe^x,x>; 0 h'(x)>0, and h(x) is increasing function; X<0 h' (x) < 0, and h(x) is a decreasing function.
∴h(x)>; =h(0)=0,
∴f'(x)>; =0, f(x) is increasing function,
Let f (x) = e (2x)- 1-2xe x, x >;; So, 0
f'(x)=2e^(2x)-(2+2x)e^x=2e^x[e^x-( 1+x)]>; 0,
∴f(x)>; =F(0)=0,
∴f(n)>; 0,
∴[e^(2n)- 1]/(2n)>; e^n,
That is f(2n)>g(n)=f(m),
∴2n>; m & gt0,
∴n/m>; 1/2。