(called 0/0 type and ∞ /∞ type infinitives), the limit calculation can be done by' Robida's Law':
1,lim(x->; a)f(x)/g(x)= lim(x-& gt; a)f’(x)/g’(x)?
If lim (x->; A) f' (x)/g' (x) is still the infinitive 0/0 or ∞ /∞, and then come back.
Use the Rovida Method once:
2,lim(x-& gt; a)f(x)/g(x)= lim(x-& gt; a) f ''(x)/g ''(x)
Until you find the limit.
for instance
① find lim (x->; 0) sin x/x limit: when x->; 0, sin x/x, become 0/0 infinitive, using Roche's law:
lim(x->; 0)sin x/x = lim(x-& gt; 0) cos x / 1 = 1?
② find lim (x->; ∞) the limit of x 3/e x: when x->; ∞), x 3/e x, becomes ∞ /∞) infinitive, using Roche's law:
lim(x->; ∞)x^3/e^x = lim(x-& gt; ∞)3x^2/e^x = lim(x-& gt; ∞)6x/e^x = lim(x-& gt; ∞) 6/e^x = 0