Current location - Training Enrollment Network - Mathematics courses - What if the numerator and denominator are all 0 when seeking the limit?
What if the numerator and denominator are all 0 when seeking the limit?
Functions: f(x), g(x), when: lim (x->; A) when f (x)/g (x) = 0/0 (or ∞ /∞),

(called 0/0 type and ∞ /∞ type infinitives), the limit calculation can be done by' Robida's Law':

1,lim(x->; a)f(x)/g(x)= lim(x-& gt; a)f’(x)/g’(x)?

If lim (x->; A) f' (x)/g' (x) is still the infinitive 0/0 or ∞ /∞, and then come back.

Use the Rovida Method once:

2,lim(x-& gt; a)f(x)/g(x)= lim(x-& gt; a) f ''(x)/g ''(x)

Until you find the limit.

for instance

① find lim (x->; 0) sin x/x limit: when x->; 0, sin x/x, become 0/0 infinitive, using Roche's law:

lim(x->; 0)sin x/x = lim(x-& gt; 0) cos x / 1 = 1?

② find lim (x->; ∞) the limit of x 3/e x: when x->; ∞), x 3/e x, becomes ∞ /∞) infinitive, using Roche's law:

lim(x->; ∞)x^3/e^x = lim(x-& gt; ∞)3x^2/e^x = lim(x-& gt; ∞)6x/e^x = lim(x-& gt; ∞) 6/e^x = 0