Suppose the speed of ship B is X and the current speed is V, because it takes the same time for two ships to meet, so there are
Meeting for the first time: AC/(27+V) = (300-AC)/(X-V)- >
-& gt; AC(x-v)=(300-AC)(27+v)-& gt;
-& gt; AC[(x-v)+(27+v)]=300(27+v) ->
-& gt; AC(27+x)= 300(27+v)………………………………( 1)
Second meeting: ad/(x+v) = (300-ad)/(27-v)- >
-& gt; A.D. (27-V) = (300-AD) (X+V)->
-& gt; AD[(27-v)+(x+v)]= 300(x+v)-& gt;
-& gt; AD(27+x)= 300(x+v)……………………………………(2)
( 1)-(2)-& gt;
-& gt; (AC-AD)(27+x)= 300[(27+v)-(x-v)]-& gt;
-& gt; (AC-AD)(27+x)=300(27-x)
Because |AC-AD|=30, there is.
1) If AC-AD=30, then
30(27+x)=300(27-x) ->
-& gt; 27+x = 270- 10x->;
-& gt; 1 1x = 243-& gt;
-& gt; x=243/ 1 1
2) If AD-AC=30, (AC-AD=-30), then
-30(27+x)=300(27-x) ->
-27-x = 270- 10x-& gt;
-& gt; 9x = 297->;
x=33
To sum up, the speed of ship B is either 243/ 1 1 (km/h) or 33 (km/h).
Downstream velocity = still water velocity+current velocity
Backward speed = still water speed-water flow speed
Then (downstream speed-upstream speed) /2= (still water speed+water flow speed-still water speed+water flow speed) /2= water flow speed.