2. 1 multiple× multiple = multiple1multiple = multiple/multiple = 1 multiple
3. Speed × time = distance/speed = time/distance/time = speed.
4. Unit price × quantity = total price ÷ unit price = total quantity ÷ quantity = unit price
5. Work efficiency × working hours = total workload ÷ work efficiency = working hours ÷ total workload ÷ working hours = work efficiency.
6. Appendix+Appendix = sum, and-one addend = another addend.
7. Minus-Minus = Minus-Minus = Minus+Minus = Minus
8. Factor × factor = product ÷ one factor = another factor.
9. Dividend = quotient dividend = divisor quotient × divisor = dividend
Calculation formula of mathematical graphics in primary schools
1, square c perimeter s area a side length perimeter = side length× 4c = 4a area = side length× side length s = a× a.
2. Cube V: volume A: side surface area = side length × side length× 6s table =a×a×6 volume = side length× side length× side length V = a× a× a.
3. rectangular
Perimeter area side length
Circumference = (length+width) ×2
C=2(a+b)
Area = length × width
S=ab
4. Cuboid
V: volume s: area a: length b: width h: height.
(1) Surface area (L× W+L× H+W× H) ×2
S=2(ab+ah+bh)
(2) Volume = length × width × height
V=abh
5 triangle
S area a bottom h height
Area = bottom × height ÷2
s=ah÷2
Height of triangle = area ×2÷ base.
Triangle base = area ×2÷ height
6 parallelogram
S area a bottom h height
Area = bottom × height
S = ah
7 trapezoid
Height of upper bottom b and lower bottom h in s area a
Area = (upper bottom+lower bottom) × height ÷2
s=(a+b)× h÷2
8 laps
Area c perimeter d= diameter r= radius
(1) circumference = diameter ×∏=2×∏× radius
c =∏d = 2r
(2) area = radius × radius×∈
Cylinder 9
V: volume h: height s; Bottom area r: bottom radius c: bottom perimeter
(1) lateral area = bottom circumference × height.
(2) Surface area = lateral area+bottom area ×2
(3) Volume = bottom area × height
(4) Volume = lateral area ÷2× radius.
10 cone
V: volume h: height s; Bottom area r: bottom radius
Volume = bottom area × height ÷3
Total number ÷ Total number of copies = average value
Formula of sum and difference problem
(sum+difference) ÷ 2 = large number
(sum and difference) ÷ 2 = decimal
And folding problems.
Sum \ (multiple-1) = decimal
Decimal × multiple = large number
(or sum-decimal = large number)
Difference problem
Difference ÷ (multiple-1) = decimal
Decimal × multiple = large number
(or decimal+difference = large number)
Tree planting problem
1 The problem of planting trees on unclosed lines can be divided into the following three situations:
(1) If trees are planted at both ends of the non-closed line, then:
Number of plants = number of nodes+1 = total length-1.
Total length = plant spacing × (number of plants-1)
Plant spacing = total length ÷ (number of plants-1)
2 If you want to plant trees at one end of the unclosed line and not at the other end, then:
Number of plants = number of segments = total length ÷ plant spacing
Total length = plant spacing × number of plants
Plant spacing = total length/number of plants
(3) If no trees are planted at both ends of the non-closed line, then:
Number of plants = number of nodes-1 = total length-1.
Total length = plant spacing × (number of plants+1)
Plant spacing = total length ÷ (number of plants+1)
The quantitative relationship of planting trees on the closed line is as follows
Number of plants = number of segments = total length ÷ plant spacing
Total length = plant spacing × number of plants
Plant spacing = total length/number of plants
The question of profit and loss
(Profit+Loss) ÷ Difference between two distributions = number of shares participating in distribution.
(Big profit-small profit) ÷ Difference between two distributions = number of shares participating in distribution.
(big loss-small loss) ÷ The difference between two distributions = the number of shares participating in the distribution.
encounter a problem
Meeting distance = speed × meeting time
Meeting time = meeting distance/speed and
Speed Sum = Meeting Distance/Meeting Time
Catch up with the problem
Catch-up distance = speed difference× catch-up time
Catch-up time = catch-up distance ÷ speed difference
Speed difference = catching distance ÷ catching time
Tap water problem
Downstream velocity = still water velocity+current velocity
Countercurrent velocity = still water velocity-current velocity
Still water velocity = (downstream velocity+countercurrent velocity) ÷2
Water velocity = (downstream velocity-countercurrent velocity) ÷2
Concentration problem
Solute weight+solvent weight = solution weight.
The weight of solute/solution × 100% = concentration.
Solution weight × concentration = solute weight
Solute weight-concentration = solution weight.
Profit and discount problem
Profit = selling price-cost
Profit rate = profit/cost × 100% = (selling price/cost-1) × 100%.
Up and down amount = principal × up and down percentage
Discount = actual selling price ÷ original selling price× 1 00% (discount <1)
Interest = principal × interest rate× time
After-tax interest = principal × interest rate × time × (1-20%)
Length unit conversion
1 km = 1 000m1m = 10 decimeter.
1 decimeter =10cm1m =10cm.
1 cm = 10/0mm
Area unit conversion
1 km2 = 100 hectare
1 ha = 1 10,000 m2
1 m2 = 100 square decimeter
1 square decimeter = 100 square centimeter
1 cm2 = 100 mm2
Volume (volume) unit conversion
1 m3 = 1000 cubic decimeter
1 cubic decimeter = 1000 cubic centimeter
1 cubic decimeter = 1 liter
1 cm3 = 1 ml
1 m3 = 1000 liter
Weight unit conversion
1 ton = 1000 kg
1 kg =1000g
1 kg = 1 kg
Rmb unit conversion
1 yuan = 10 angle.
1 angle = 10 point
1 yuan = 100 integral.
Time unit conversion
1 century = 100 1 year =65438+ February.
The big month (3 1 day) includes:1\ 3 \ 5 \ 7 \ 8 \10 \ 65438+February.
Abortion (30 days) includes: April \ June \ September \165438+1October.
February 28th in a normal year and February 29th in a leap year.
There are 365 days in a normal year and 366 days in a leap year.
1 day =24 hours 1 hour =60 minutes.
1 minute =60 seconds 1 hour =3600 seconds.
Calculation formula of perimeter, area and volume of mathematical geometry in primary schools
1, the perimeter of the rectangle = (length+width) ×2 C=(a+b)×2.
2. The circumference of a square = side length ×4 C=4a.
3. Area of rectangle = length× width S=ab
4. Square area = side length x side length s = a.a = a.
5. Area of triangle = base × height ÷2 S=ah÷2.
6. parallelogram area = bottom x height S=ah
7. trapezoidal area = (upper bottom+lower bottom) × height ÷ 2s = (a+b) h ÷ 2.
8. Diameter = Radius× 2D = 2r Radius = Diameter ÷2 r= d÷2
9. The circumference of a circle = π× diameter = π× radius× 2c = π d = 2π r.
10, area of circle = π× radius× radius.
Common junior high school mathematics formulas
1 There is only one straight line at two points.
The line segment between two points is the shortest.
The complementary angles of the same angle or equal angle are equal.
The complementary angles of the same angle or the same angle are equal.
One and only one straight line is perpendicular to the known straight line.
Of all the line segments connecting a point outside the straight line with points on the straight line, the vertical line segment is the shortest.
7 Parallel axiom passes through a point outside a straight line, and there is only one straight line parallel to this straight line.
If both lines are parallel to the third line, the two lines are also parallel to each other.
The same angle is equal and two straight lines are parallel.
The internal dislocation angles of 10 are equal, and the two straight lines are parallel.
1 1 are complementary and two straight lines are parallel.
12 Two straight lines are parallel and have the same angle.
13 two straight lines are parallel, and the internal dislocation angles are equal.
14 Two straight lines are parallel and complementary.
Theorem 15 The sum of two sides of a triangle is greater than the third side.
16 infers that the difference between two sides of a triangle is smaller than the third side.
The sum of the internal angles of 17 triangle is equal to 180.
18 infers that the two acute angles of 1 right triangle are complementary.
19 Inference 2 An outer angle of a triangle is equal to the sum of two non-adjacent inner angles.
Inference 3 The outer angle of a triangle is greater than any inner angle that is not adjacent to it.
2 1 congruent triangles has equal sides and angles.
Axiom of Angular (SAS) has two triangles with equal angles.
The Axiom of 23 Angles (ASA) has the congruence of two triangles, which have two angles and their sides correspond to each other.
The inference (AAS) has two angles, and the opposite side of one angle corresponds to the congruence of two triangles.
The axiom of 25 sides (SSS) has two triangles with equal sides.
Axiom of hypotenuse and right angle (HL) Two right angle triangles with hypotenuse and right angle are congruent.
Theorem 1 The distance between a point on the bisector of an angle and both sides of the angle is equal.
Theorem 2 is a point with equal distance on both sides of an angle, which is on the bisector of this angle.
The bisector of an angle 29 is the set of all points with equal distance to both sides of the angle.
The nature theorem of isosceles triangle 30 The two base angles of isosceles triangle are equal (that is, equilateral and equiangular).
3 1 Inference 1 The bisector of the vertices of an isosceles triangle bisects the base and is perpendicular to the base.
The bisector of the top angle, the median line on the bottom edge and the height on the bottom edge of the isosceles triangle coincide with each other.
Inference 3 All angles of an equilateral triangle are equal, and each angle is equal to 60.
34 Judgment Theorem of an isosceles triangle If a triangle has two equal angles, then the opposite sides of the two angles are also equal (equal angles and equal sides).
Inference 1 A triangle with three equal angles is an equilateral triangle.
Inference 2 An isosceles triangle with an angle equal to 60 is an equilateral triangle.
In a right triangle, if an acute angle is equal to 30, the right side it faces is equal to half of the hypotenuse.
The center line of the hypotenuse of a right triangle is equal to half of the hypotenuse.
Theorem 39 The distance between the point on the vertical line of a line segment and the two endpoints of the line segment is equal.
The inverse theorem and the point where the two endpoints of a line segment are equidistant are on the middle vertical line of this line segment.
The perpendicular bisector of the 4 1 line segment can be regarded as the set of all points with equal distance from both ends of the line segment.
Theorem 42 1 Two graphs symmetric about a line are conformal.
Theorem 2: If two figures are symmetrical about a straight line, then the symmetry axis is the perpendicular to the straight line connecting the corresponding points.
Theorem 3 Two graphs are symmetrical about a straight line. If their corresponding line segments or extension lines intersect, then the intersection point is on the axis of symmetry.
45 Inverse Theorem If the straight line connecting the corresponding points of two graphs is bisected vertically by the same straight line, then the two graphs are symmetrical about this straight line.
46 Pythagorean Theorem The sum of squares of two right angles A and B of a right triangle is equal to the square of the hypotenuse C, that is, A 2+B 2 = C 2.
47 Inverse Theorem of Pythagorean Theorem If the three sides of a triangle A, B and C are related in length A 2+B 2 = C 2, then the triangle is a right triangle.
The sum of the quadrilateral internal angles of Theorem 48 is equal to 360.
The sum of the external angles of the quadrilateral is equal to 360.
The theorem of the sum of internal angles of 50 polygons is that the sum of internal angles of n polygons is equal to (n-2) × 180.
5 1 It is inferred that the sum of the external angles of any polygon is equal to 360.
52 parallelogram property theorem 1 parallelogram diagonal equality
Theorem 2 of parallelogram properties: the opposite sides of parallelogram are equal
It is inferred that the parallel segments sandwiched between two parallel lines are equal.
The property theorem of parallelogram The three diagonals of parallelogram are equally divided.
Parallelogram decision theorem 1 Two groups of parallelograms with equal diagonals are parallelograms.
Parallelogram Decision Theorem 2 Two groups of parallelograms with equal opposite sides are parallelograms.
Parallelogram Decision Theorem 3 A quadrilateral whose diagonal is bisected is a parallelogram.
Parallelogram Decision Theorem 4 A group of parallelograms with equal opposite sides are parallelograms.
Theorem of Rectangular Properties 1 All four corners of a rectangle are right angles.
The property theorem of rhombus Two diagonals of a rhombus are perpendicular to each other, and each diagonal bisects a set of diagonals.
Diamond area = half of diagonal product, that is, S=(a×b)÷2.
Diamond Decision Theorem 1 A quadrilateral with four equilateral sides is a diamond.
Diamond Decision Theorem 2 Parallelograms whose diagonals are perpendicular to each other are diamonds.
Theorem of Square Properties 1 All four corners of a square are right angles and all four sides are equal.
Theorem of Square Properties 2 Two diagonal lines of a square are equal and bisected vertically, and each diagonal line bisects a set of diagonal lines.
Theorem 1 is congruent on two centrosymmetric graphs.
Theorem 2 For two graphs with symmetric centers, the connecting lines of symmetric points pass through the symmetric centers and are equally divided by the symmetric centers.
Inverse Theorem If the corresponding points of two graphs pass through a certain point and are connected by this point.
If the point is split in two, then the two graphs are symmetrical about the point.
The property theorem of isosceles trapezoid The two angles of isosceles trapezoid on the same base are equal.
The two diagonals of an isosceles trapezoid are equal.
Decision theorem of isosceles trapezoid A trapezoid with two equal angles on the same base is an isosceles trapezoid.
A trapezoid with equal diagonal lines is an isosceles trapezoid.
Theorem of bisection of parallel lines If a group of parallel lines are cut on a straight line.
Equal, then the line segments cut on other straight lines are also equal.