Current location - Training Enrollment Network - Mathematics courses - Mathematical formula junior high school
Mathematical formula junior high school
Junior high school mathematics formula is as follows:

Common formulas for factorization

1, square difference formula: a? -B? =(a+b)(a-b).

2. Complete square formula: a? +2ab+b? =(a+b)? .

3. Cubic sum formula: A? +b? =(a+b)(a? -ab+b? )。

4. Cubic difference formula: a? -B? =(a-b)(a? +ab+b? )。

5. Complete cubic sum formula: a? +3a? b+3ab? +b? =(a+b)? .

6. Complete cubic difference formula: a? -3a? b+3ab? -B? =(a-b)? .

7. Three complete square formulas: A? +b? +c? +2ab+2bc+2ac=(a+b+c)? .

8. the formula of cubic sum of three terms: a? +b? +c? -3abc=(a+b+c)(a? +b? +c? -ab-bc-ac).

Inductive formula of trigonometric function

Inductive formula 1: The values of the same trigonometric function of angles with the same terminal edges are equal.

Let α be an arbitrary acute angle, and the expression of this angle in the arc system.

sin(2kπ+α)=sinα(k∈Z).

cos(2kπ+α)=cosα(k∈Z).

tan(2kπ+α)=tanα(k∈Z).

cot(2kπ+α)=cotα(k∈Z).

Induce Formula 2: The relationship between the trigonometric function value of π+α and the trigonometric function value of α.

Let α be an arbitrary angle, and the expression of this angle in the arc system.

sin(π+α)=-sinα.

cos(π+α)=-cosα.

tan(π+α)=tanα.

cot(π+α)=cotα.

Inductive formula 3: the relationship between trigonometric function value of arbitrary angle α and-α.

sin(-α)=-sinα.

cos(-α)=cosα.

tan(-α)=-tanα.

cot(-α)=-cotα.

Inductive Formula 4: The relationship between π-α and the trigonometric function value of α can be obtained by Formula 2 and Formula 3.

sin(π-α)=sinα.

cos(π-α)=-cosα.

tan(π-α)=-tanα.

cot(π-α)=-cotα.

Inductive Formula 5: Using Formula 1 and Formula 3, we can get the relationship between the trigonometric function value of 2π-α and α.

sin(2π-α)=-sinα.

cos(2π-α)=cosα.

tan(2π-α)=-tanα.

cot(2π-α)=-cotα.

Induce Formula 6: The relationship between π/2α and the trigonometric function value of α.

sin(π/2+α)=cosα.

cos(π/2+α)=-sinα.

tan(π/2+α)=-cotα.

cot(π/2+α)=-tanα.

sin(π/2-α)=cosα.

cos(π/2-α)=sinα.

tan(π/2-α)=cotα.

cot(π/2-α)=tanα.

sin(3π/2+α)=-cosα.

cos(3π/2+α)=sinα.

tan(3π/2+α)=-cotα.

cot(3π/2+α)=-tanα.

sin(3π/2-α)=-cosα.

cos(3π/2-α)=-sinα.

tan(3π/2-α)=cotα.

cot(3π/2-α)=tanα.