(1), n=5, obviously established.
(2)
If n=k is true, k >;; =5
Namely k 2
Then n=k+ 1.
(k+ 1)^2=k^2+2k+ 1<; 2^k+2k+ 1
2^k+2k+ 1-2^(k+ 1)=2^k+2k+ 1-2*2^k
=2k+ 1-2^k
k^2-(2k+ 1)=k^2-2k- 1=(k- 1)^2-2
Because k & gt=5
So (k- 1) 2-2 >: 0
So k 2 > 2k+ 1
So 2k > k 2 > 2k+ 1
So 2k+ 1-2 k < 0.
So (k+ 1) 2
Comprehensive (1), (2)
Proof of proposition