y'=e^xcosx -e^xsinx
=e^x(cosx-sinx)
y''=e^x(cosx-sinx)+e^x(-sinx-cosx)
=-2e^xsinx
When the image of y''>0, y = e x cosx function is concave upward, the minimum value may be obtained at this time.
∵e^x>; 0
∴sinx<; 0
2kπ+π& lt; x & lt2kπ+2π
The angles are in the third and fourth quadrants.
y'=0
∵e^x>; 0
∴cosx-sinx=0
tanx= 1
x=kπ+π/4
The angles are in the third and fourth quadrants.
∴x=(2k+ 1)π+π/4 to get the minimum value.