Solution:
∫xy+yz+zx = 3,x+y+z=5
∴x+y=5-z
∴2xy=6-2(y+x)z=6-2(5-z)z=2z^2- 10z+6
∴2*(xy+yz+zx)=6
∫x+y+z = 5
∴(x+y+z)^2=25
x^2+y^2+z^2+2*(xy+xz+yz)=25
x^2+y^2+z^2= 19
∵(x-y)^2≥0,
x^2+y^2-2xy≥0,
x^2+y^2≥2xy,
When ∴ x 2+y 2 = 2xy, z 2 has the maximum value.
∴z^2+2xy= 19,
∴z^2+2z^2- 10z+6= 19,
3z^2- 10z- 13=0
z^2- 10z/3- 13/3=0
(z-5/3)^2-(8/3)^2=0
(z- 13/3)*(z+ 1)=0
z 1= 13/3
z2=- 1
z 1 & gt; z2
Therefore, the maximum value of z = 13/3.
A: If the real numbers x, y and z satisfy X+Y+Z = 5 and XY+YZ+ZX = 3, the maximum value of z is 13/3.