(2)∫a:b = c:d = 2 ∴a=2b,c=2d? ∴(a+b):b=3b:b=3,(c+d):d=3d:d=3
(3) established. ①∫a:b = c:d? ∴a=bc/d? ∴(a-b):b=(bc/d-b):b=c/d? - 1=(c-d):d
②∫a:b = c:d? ∴a/b- 1=c/d- 1? ∴a/b-b/b=c/d-d/d? ∴(a-b):b=(c-d):d
(4) From the meaning of the question: ①x+y=zm? ②y+z=xm? ③z+x=ym
By who? ①+②+③de:2(x+y+z)=(x+y+z)m∴(2-m)(x+y+z)= 0? ∴m=2 or x+y+z=0.
If x+y+z=0, then x+y=-z? ∴m=(x+y)/z=(-z)/z=- 1
To sum up: m=- 1 or 2.
Second, (1)
(2)>
? (1) For any true fraction, the numerator and denominator are greater than the original number plus a positive number.
? ② As shown in the figure.
? ∫a:b is a true fraction, and M is a positive number ∴ A < b? ∴am<; bm? That's s (b)
? ∴s(a)+s(b)<; S(A)+S(C)
That's ab+am
a(b+m)& lt; b(a+m)?
(a+m):(b+m) > A: B?
Personal opinion, for reference only.