Then the radius is 3x 0(x0 & gt;; 0)
The distance from the center of the circle to y=x is |x0-3x0|/√2=√2x0.
Then (2 √ 7/2) 2 = (3x0) 2-(√ 2x0) 2.
X0= 1。
So the center of the circle is (1, 3) and the radius is 3.
So (y-3) 2+(x- 1) 2 = 9.
Po 2-om 2 = op 2 (let P(x 1, y 1).
Then 2x 1+6y 1= 1.
Then find the minimum value of √ (x12+y12).
Various methods can be used.
For example, eliminating one yuan. ..
And Cauchy ..
Number-shape combination
I write the answer directly.
The answer is √ 10/20.
2.f(x)=-f(-x)
Then LG (1+ax)/(1+2x) =-LG (1-ax)/(1-2x).
If a 2 = 4, then a=-2 or a=2 (discard)
So f (x) = LG (1-2x)/(1+2x).
And (1-2x)/( 1+2x) >: 0.
Yes-1/2
Then-b > -1/2 and b
So 0
f(x)= LG( 1-2x)/( 1+2x)= LG {- 1+[2/( 1+2x)]}
As 1+2x >: 0, 1+2x does not increase with the increase of x.
2/( 1+2x) will not reduce ... so-b.
& ltb, at this time f(x) is decreasing,
When 1+2x
3.
f(x+ 1)-f(x)=[(x+ 1)(x+2)[35-2(x+ 1)]-x(x+ 1)(35-2x)]/ 150
=(x+ 1)(33-x)/25
f( 1)=g( 1)=7/30
g(x)= g( 1)+( 1+ 1)(33- 1)/25+(2+ 1)(33-2)/25......(x+ 1)(33-x)/25
....
Can you write the title clearly?
Think there's something wrong.