Current location - Training Enrollment Network - Mathematics courses - Is math difficult?
Is math difficult?
Everyone can learn math well.

It is an indisputable fact that mathematics is boring, abstruse and abstract for many people, but it does not mean that it is difficult to learn. A famous mathematical figure once said, "Mastering mathematics means being good at solving problems, but it does not depend entirely on the number of problems solved, but also on the analysis, exploration and thorough research before solving problems." In other words, solving mathematical problems is not to regard yourself as a problem-solving machine or a problem-solving slave, but to strive to be the master of problem-solving. It is to absorb the methods and ideas of solving problems and exercise your own thinking. This is the so-called "math problem should examine the ability of candidates." So how to "analyze and explore", "think deeply and study hard" before and after solving the problem? In fact, everything in the world is interlinked. I wonder if students like Chinese? If you want to write an excellent composition, you must be careful, creative and have a writing outline. This kind of creativity must come from your own life, your own personal experience, feelings and ideas, and you can never write a good article by making it up. Then to solve a math problem, we should also examine the problem and find out what the problem is known. What are you waiting for? This is called "targeted". "De" means opening the channel between "known" and "to be sought", that is, "creativity", that is, using one's existing mathematical knowledge and problem-solving methods to communicate this connection, or breaking the problem into parts, or turning it into a familiar problem. This "creativity" is a long-term accumulation of mathematical thinking, a summary of one's own experience in solving problems, and a feeling after solving problems. So the summary after solving the problem is the most important. I remember that since primary school, the Chinese teacher always asked us to tell the central idea of an article after reading it. what is the purpose? When we finish a math problem, we should also think about and summarize its central idea: what knowledge points are involved in the problem; What problem-solving methods or ideas are used in solving problems, so as to "communicate" with the proposer and reach the realm of "understanding". Of course, the summary after solving problems should also be considered: whether there are other solutions to the problem; Whether it can be popularized to solve similar problems. Only by "drawing inferences from others" can we really "touch the analogy". In short, any study should not be greedy for perfection, but should strive for perfection.