f'(x)=(ax? -2x+ 1)/x
Molecular δ = 4-4a
When δ≤ 0 →a≥ 1, f'(x)≥0 f(x) is the increasing function of the monotonically increasing interval x∈(0, +∞) (blue).
When δ > 0, that is, A.
0<a< When 1, define two stagnation points x? =[ 1-√( 1-a)]/a, left+right-,this is the maximum point.
x? =[ 1-√( 1-a)]/a, left and right+,this is the minimum point.
Monotone increasing interval x∈(0, x? )∩(x? +∞), monotonically decreasing interval x∈(x? ,x? (red)
When a≤0, the stationary point X in the domain is defined. =[ 1-√( 1-a)]/a (or x? =? , when a=0), left+right-is the maximum point.
Monotone increasing interval x∈(0, x? ), monotonically decreasing interval x∈(x? , +∞) (black)