Because 0
So,
2 sin2a-[ Sina /( 1-cosa)]
=[4 Sina cosa( 1-cosa)-Sina]/( 1-cosa)
=-[sina/( 1-cosa)](2cosa- 1)^2
= & lt0
Therefore,
2 sin2a = < Sina /( 1-cosa).
2.( 1) Derive f ′ (x) = ax ㏑ a+[x+1-(x-2)]/(x+1)? = a xlna+3/(x+ 1), because x >;; 1,a & gt 1,a^x>; 0,lna & gt0,3/(x+ 1)? & gt0。 So f' (x) >: 0 means that f(x) is increasing function on (-1, +∞).
(2) when x <-1, ax >; 0,(x-2)/(x+ 1)>0
a^x+(x-2)/(x+ 1)>; 0, f(x)=0 has no root, so there is no negative real root.
When-1
Because of a> 1, an X.
(x-2)/(x+ 1)= 1-3/(x+ 1)& lt; -2
a^x+(x-2)/(x+ 1)<; - 1 & lt; 0
F(x)=0 has no root, that is, there is no negative root.
x≦- 1
So the equation f(x)=0 has no negative root.