(1)∫D is the midpoint of BC.
∴BD=CD
∫AC∨BG
∴∠CFG=∠BGF
In △BGD and △CFD,
Large CFG = ∠ BGF
Attached ∠BDG=∠CDF
Number BD=CD
∴△BGD≌△CFD(AAS)
∴BG=CF
(2) a: be+cf < ef。
Proof: ∫△BGD?△CFD
∴CF=BG,FD=GD
∵DE⊥GF
∴∠GDE=∠FDE=90
At △EDG and △EDF,
Large FD=GD
Attached ∠GDE=∠FDE
Number ED=ED
∴△EDG≌△EDF(SAS)
∴EG=EF
∫e b+ BG > EG,CF=BG
∴EB+CF>EF
Absolutely accurate! ! ! All by yourself! ! ! Hope to adopt! ! !