If the chord length is 4, it passes through the center of the circle, that is, -2a-2b+2 = 0, that is, a+b = 1.
1/a+ 1/b =(a+b)/(ab)≥(a+b)/((a+b)? /4) = 4.
If and only if a = b = 1/2, the equal sign holds, so the minimum value is 4.
2. Through the average inequality, a? /b+b ≥ 2√(a? /b b) = 2a,
Similarly, b? /c+c ≥ 2b,c? /a+a ≥ 2c。
Add it up and get an a? /b+b? /c+c? /a ≥ 2(a+b+c)-(a+b+c) = a+b+c。
3. a? +b? ≥ 2ab,
So 2(a? +b? )≥ a? +b? +2ab = (a+b)? .
So√ (a? +b? )≥ (a+b)/√2。
Similarly √(b? +c? )≥ (b+c)/√2,√(c? +a? )≥ (c+a)/√2。
Add up to get √(a? +b? )+√(b? +c? )+√(c? +a? )≥ 2(a+b+c)/√2 = √2 (a+b+c)。