Current location - Training Enrollment Network - Mathematics courses - How to do the problem of basic inequality in senior one mathematics?
How to do the problem of basic inequality in senior one mathematics?
1. The center of the circle is (-1, 2) and the radius is 2.

If the chord length is 4, it passes through the center of the circle, that is, -2a-2b+2 = 0, that is, a+b = 1.

1/a+ 1/b =(a+b)/(ab)≥(a+b)/((a+b)? /4) = 4.

If and only if a = b = 1/2, the equal sign holds, so the minimum value is 4.

2. Through the average inequality, a? /b+b ≥ 2√(a? /b b) = 2a,

Similarly, b? /c+c ≥ 2b,c? /a+a ≥ 2c。

Add it up and get an a? /b+b? /c+c? /a ≥ 2(a+b+c)-(a+b+c) = a+b+c。

3. a? +b? ≥ 2ab,

So 2(a? +b? )≥ a? +b? +2ab = (a+b)? .

So√ (a? +b? )≥ (a+b)/√2。

Similarly √(b? +c? )≥ (b+c)/√2,√(c? +a? )≥ (c+a)/√2。

Add up to get √(a? +b? )+√(b? +c? )+√(c? +a? )≥ 2(a+b+c)/√2 = √2 (a+b+c)。