∠∠A = 2∠B,∠A=60
∴∠B=30,∠c = 90°
∴c=2b,a=3b
∴a? =3b=b(b+c)
(2) Solution: The relationship a2=b(b+c) still holds.
Method 1: Prove: ∫∠ A = 2 ∠ B.
∴∠c= 180-∠a-∠b = 180-3∠b
Derived from sine theorem
a
Sina.com
=
b
Simbe
=
c
sinC
=2R
That is, a=2RsinA, b=2RsinB and c=2RsinC.
∴b(b+c)=2RsinB(2RsinB+2RsinC)
= 4r 2s inb[sin b+ sin( 180-3∠B)]
=4R2sinB(sinB+sin3∠B)
=4R2sinB(2sin2BcosB)
=4R2sin2B×sin2B
=4R2sin22B
∫a2 = 4r 2s in 2 a = 4r 2s in 22 b。
∴a2=b(b+c)