Connect the center of the circle I with three tangent points to make a high line AH, connecting IA, IB and IC.
Let the radius of circle I be r, then ID=IE=IF=r? Let the height ah = h.
∫S△ABC = S△IBC+S△IAC+S△IAB
∫S△ABC = 1/2? ahS△IBC= 1/2? ar? S△IAC= 1/2? brS△IAB= 1/2? chrome
∴ah=ar+br+cr=(a+b+c)r
∴h/r=(a+b+c)/a
∵IE⊥BC? AH⊥BC
∴IE∥AH
∴AD/ID=AH/HE
∴AD/ID=(a+b+c)/a
∴AI/ID=(b+c)/a