Solution:
(1) Let x=0.
Then there are: (1+0)+(1+0) 2+(1+0) 3+...+(1+0) n = A0+a1(0).
Namely:1+1+1+1...+1(n1) = A0+0.
Get n = a0.
(2) Let x= 1.
There are: (1+1)+(1+1) 2+(1+1) 3+(1+).
Namely: 2+2 2+2 3+...+2 n = A0+a1+A2+A3+...+An.
=2+2^2+2^3+………+2^n=+57
=2+2^2+2^3+………+2^n-57=
(2+2 2+2 3+...+2 n should have a formula, but I don't know, I can only use the assumed value of n to find it. Please forgive me! )
(3) Let n=6.
Then: 2+22+23+24+25+26-57 = n.
=2+4+8+ 16+32+64-57= n
= 126-57 = n n=69 and n=6 are contradictory.
∴n>6
Let n=5.
Then it is: 2+22+263+24+25-57 = n.
=2+4+8+ 16+32-57= n
= 62-57 = n n = 5 ∴ n = 5 hold.
∴n=5