The coordinates (x, y) of point A at time t set the image in the second quadrant.
Then y' = (vbt-y)/(0-x) = (y-vbt)/X.
→x y'= y - Vb t
Derive t
(dx/dt) y' + x y'' = y' - Vb ①
And dS=√[(dx)? +(dy)? ]=√( 1+y '? )dx
→S =∫(-h→x)√( 1+y’? )dx
=Va t
Derive t
√( 1+y '? )(dx/dt) =Va
dx/dt =Va/√( 1+y '? )
Substitute (1)
【Va/√( 1+y’? )] y' + x y'' = y' - Vb
Finishing √( 1+y'? )= Va y' / ( y' - Vb - x y ' ')
1+y '? =Va? Is it? / ( y' - Vb - x y ' ')?
.