Current location - Training Enrollment Network - Mathematics courses - Ship mathematical modeling
Ship mathematical modeling
Let the initial distance between A and B be h(t=0), the speed of A ship VA and the speed of B ship Vb.

The coordinates (x, y) of point A at time t set the image in the second quadrant.

Then y' = (vbt-y)/(0-x) = (y-vbt)/X.

→x y'= y - Vb t

Derive t

(dx/dt) y' + x y'' = y' - Vb ①

And dS=√[(dx)? +(dy)? ]=√( 1+y '? )dx

→S =∫(-h→x)√( 1+y’? )dx

=Va t

Derive t

√( 1+y '? )(dx/dt) =Va

dx/dt =Va/√( 1+y '? )

Substitute (1)

【Va/√( 1+y’? )] y' + x y'' = y' - Vb

Finishing √( 1+y'? )= Va y' / ( y' - Vb - x y ' ')

1+y '? =Va? Is it? / ( y' - Vb - x y ' ')?

.