Solution:
The quadrilateral EFGH is similar to the original isosceles trapezoid ABCD for the following reasons:
E is the midpoint of OD and f is the midpoint of OC.
∴EF is the center line of △COD.
∴EF= 1/2CD,EF‖CD,
∴∠OEF=∠ODC,∠OFE=∠OCD
Similarly:
HF is the center line of △BOC.
∴HF= 1/2BC,HF‖BC
∴∠OFH=∠OCB,∠OHF=∠OBC
GH is the center line of delta △AOB.
∴GH= 1/2AB,GH‖AB
∴∠OHG=∠OBA,∠OGH=∠OAB
GE is the center line of △AOD.
∴GE= 1/2AD,GE‖AD
∴∠OGE=∠OAD,∠OEG=∠ODA
∴∠GEF=∠OEF+∠OEG=∠ODC+∠ODA=∠ADC
∠EFH =∠OFE+∠OFH =∠ OCB+∠ DCB.
∠FHG =∠OHF+∠OHG =∠OBC+∠ Oba =∠CBA.
∠HGE =∠OGH+∠OGE =∠OAB+∠OAD =∠ bud.
The corresponding edges are proportional and the corresponding angles are equal.
∴ The quadrilateral EFGH is similar to the original isosceles trapezoid ABCD.