= 180 -∠BDE-∠B
= < bed
Because AB=AC, ∠ b = ∠ C.
So △BDE∽△CFD
(2) Proof: Since DF=EF, ∠ EDF = ∠ FED = ∠ B = ∠ C.
So △ Fed ∽△ABC
Because BD=CD
So FD/AB=ED/BC=ED/2BD.
ED/FD=BD/FC because △BDE∽△CFD.
So FD/AB=ED/2BD=FD/2FC.
So AB=2FC=AC.
So AF=FC
Because BD=CD
So DF is the center line of △ABC, so DF//AB
(3) solution: ∠ BAC = 180-∠ AFD because DF//AB.
Because de⊥ac∠AFD+∠EDF = 90.
Because EDF = b = C.
So ∠ EDF = ( 180-∠ BAC)/2。
So ∠ BAC =180-[90-(180-∠ BAC)/2] =180-∠ BAC/2.
So ∠ BAC = 120.
(4) Solution: ① In the isosceles triangle ABC, AB=AC=5, BC=8.
So ∠B=∠C=arcsin(3/5)
So ∠EDF=∠B=arcsin(3/5)
Because △BDE∽△CFD, DE/DF=BE/DC=x/4.
So DF=4DE/x
△ bed, according to cosine theorem
DE^2=BE^2+BD^2-2*BE*BD*cos∠B
=x^2+ 16-32x/5
So s △ def = y = (1/2) * de * df * sin ∠ EDF.
=( 1/2)*(4/x)*DE^2*(3/5)
=(6/5x)*(x^2-32x/5+ 16)
= 6x/5- 192/25+96/5x(x & gt; 0)
②△AEF is an isosceles triangle.
The first case: AE=EF
Because AE=BE-AB=x-5,
And ef 2 = de 2+df 2-2 * de * df * cos ∠ EDF.
=x^2+ 16-32x/5+( 16/x^2)*(x^2+ 16-32x/5)-(8/x)*(4/5)*(x^2+ 16-32x/5)
=(x^2+ 16-32x/5)( 1-32/5x+ 16/x^2)
EF=x+ 16/x-32/5
So x-5=x+ 16/x-32/5.
x=80/7
The second case: AE=AF
Because △BDE∽△CFD, BD/FC=BE/DC.
So FC= 16/x
So af = AC-FC = 5-16/x.
So x-5=5- 16/x
x^2- 10x+ 16=0
X=2 (truncated) or 8.
The third case: AF=EF
5- 16/x=x+ 16/x-32/5
x+32/x-57/5=0
5x^2-57x+ 160=0
(x-5)(5x-32)=0
X=5 (truncated) or 32
To sum up, x=80/7 or 8 or 32.