Multiplication and factorization A2-B2 = (a+b) (a-b) A3+B3 = (a+b) (A2-AB+B2) A3-B3 = (a-b) (A2+AB+B2)
Trigonometric inequality | A+B |≤| A |+B||||| A-B|≤| A |+B || A |≤ B < = > -b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
The solution of the unary quadratic equation-b+√ (B2-4ac)/2a-b-b+√ (B2-4ac)/2a
The relationship between root and coefficient x1+x2 =-b/ax1* x2 = c/a Note: Vieta theorem.
Discriminant b2-4a=0 Note: The equation has two equal real roots.
B2-4ac >0 Note: The equation has real roots.
B2-4ac & lt; 0 Note: The equation has multiple yokes.
formulas of trigonometric functions
Two-angle summation formula sin (a+b) = sinacosb+cosasinbsin (a-b) = sinacosb-sinbcosa.
cos(A+B)= cosa cosb-Sina sinb cos(A-B)= cosa cosb+Sina sinb
tan(A+B)=(tanA+tanB)/( 1-tanA tanB)tan(A-B)=(tanA-tanB)/( 1+tanA tanB)
ctg(A+B)=(ctgActgB- 1)/(ctg B+ctgA)ctg(A-B)=(ctgActgB+ 1)/(ctg B-ctgA)
The angle doubling formula tan2a = 2tana/(1-tan2a) ctg2a = (ctg2a-1)/2ctga.
cos2a = cos2a-sin2a = 2 cos2a- 1 = 1-2 sin2a
Half-angle formula sin (a/2) = √ ((kloc-0/-COSA)/2) sin (a/2) =-√ ((kloc-0/-COSA)/2).
cos(A/2)=√(( 1+cosA)/2)cos(A/2)=-√(( 1+cosA)/2)
tan(A/2)=√(( 1-cosA)/(( 1+cosA))tan(A/2)=-√(( 1-cosA)/(( 1+cosA))
ctg(A/2)=√(( 1+cosA)/(( 1-cosA))ctg(A/2)=-√(( 1+cosA)/(( 1-cosA))
Sum-difference product 2sina cosb = sin (a+b)+sin (a-b) 2cosasinb = sin (a+b)-sin (a-b)
2 cosa cosb = cos(A+B)-sin(A-B)-2 sinasinb = cos(A+B)-cos(A-B)
sinA+sinB = 2 sin((A+B)/2)cos((A-B)/2 cosA+cosB = 2 cos((A+B)/2)sin((A-B)/2)
tanA+tanB = sin(A+B)/cosa cosb tanA-tanB = sin(A-B)/cosa cosb
ctgA+ctgBsin(A+B)/Sina sinb-ctgA+ctgBsin(A+B)/Sina sinb
The sum of the first n terms in some sequences is1+2+3+4+5+6+7+8+9+…+n = n (n+1)/21+3+5+7+9+/kloc-0.
2+4+6+8+ 10+ 12+ 14+…+(2n)= n(n+ 1) 12+22+32+42+52+62+72+82+…+N2 = n(n+ 1)(2n+ 1)/6
13+23+33+43+53+63+…n3 = N2(n+ 1)2/4 1 * 2+2 * 3+3 * 4+4 * 5+5 * 6+6 * 7+…+n(n+ 1)= n(n+ 1)(n+2)/3
Sine theorem a/sinA=b/sinB=c/sinC=2R Note: where r represents the radius of the circumscribed circle of a triangle.
Cosine Theorem b2=a2+c2-2accosB Note: Angle B is the included angle between side A and side C..
The standard equation of a circle (x-a)2+(y-b)2=r2 Note: (A, B) is the center coordinate.
General equation of circle x2+y2+Dx+Ey+F=0 Note: D2+E2-4f > 0
Parabolic standard equation y2=2px y2=-2px x2=2py x2=-2py
Lateral area of a straight prism S=c*h lateral area of an oblique prism s = c' * h.
Lateral area of a regular pyramid S= 1/2c*h' lateral area of a regular prism S= 1/2(c+c')h'
The lateral area of the frustum of a cone S = 1/2(c+c')l = pi(R+R)l The surface area of the ball S=4pi*r2.
Lateral area of cylinder S=c*h=2pi*h lateral area of cone s =1/2 * c * l = pi * r * l.
The arc length formula l=a*r a is the radian number r > of the central angle; 0 sector area formula s= 1/2*l*r
Conical volume formula V= 1/3*S*H Conical volume formula V= 1/3*pi*r2h
Oblique prism volume V=S'L Note: where s' is the straight cross-sectional area and l is the side length.
Cylinder volume formula V=s*h cylinder V=pi*r2h
1.y=c(c is a constant) y'=0
2.y=x^n y'=nx^(n- 1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'= 1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y = Tanks Y' =1/cos 2x
8.y=cotx y'=- 1/sin^2x
9 . y = arcsinx y'= 1/√ 1-x^2
10 . y = arc cosx y'=- 1/√ 1-x^2
1 1 . y = arctanx y'= 1/ 1+x^2
12 . y = arccotx y'=- 1/ 1+x^2