Current location - Training Enrollment Network - Mathematics courses - Mathematics course in vocational high school
Mathematics course in vocational high school
Formula classification formula expression

Multiplication and factorization A2-B2 = (a+b) (a-b) A3+B3 = (a+b) (A2-AB+B2) A3-B3 = (a-b) (A2+AB+B2)

Trigonometric inequality | A+B |≤| A |+B||||| A-B|≤| A |+B || A |≤ B < = > -b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

The solution of the unary quadratic equation-b+√ (B2-4ac)/2a-b-b+√ (B2-4ac)/2a

The relationship between root and coefficient x1+x2 =-b/ax1* x2 = c/a Note: Vieta theorem.

Discriminant b2-4a=0 Note: The equation has two equal real roots.

B2-4ac >0 Note: The equation has real roots.

B2-4ac & lt; 0 Note: The equation has multiple yokes.

formulas of trigonometric functions

Two-angle summation formula sin (a+b) = sinacosb+cosasinbsin (a-b) = sinacosb-sinbcosa.

cos(A+B)= cosa cosb-Sina sinb cos(A-B)= cosa cosb+Sina sinb

tan(A+B)=(tanA+tanB)/( 1-tanA tanB)tan(A-B)=(tanA-tanB)/( 1+tanA tanB)

ctg(A+B)=(ctgActgB- 1)/(ctg B+ctgA)ctg(A-B)=(ctgActgB+ 1)/(ctg B-ctgA)

The angle doubling formula tan2a = 2tana/(1-tan2a) ctg2a = (ctg2a-1)/2ctga.

cos2a = cos2a-sin2a = 2 cos2a- 1 = 1-2 sin2a

Half-angle formula sin (a/2) = √ ((kloc-0/-COSA)/2) sin (a/2) =-√ ((kloc-0/-COSA)/2).

cos(A/2)=√(( 1+cosA)/2)cos(A/2)=-√(( 1+cosA)/2)

tan(A/2)=√(( 1-cosA)/(( 1+cosA))tan(A/2)=-√(( 1-cosA)/(( 1+cosA))

ctg(A/2)=√(( 1+cosA)/(( 1-cosA))ctg(A/2)=-√(( 1+cosA)/(( 1-cosA))

Sum-difference product 2sina cosb = sin (a+b)+sin (a-b) 2cosasinb = sin (a+b)-sin (a-b)

2 cosa cosb = cos(A+B)-sin(A-B)-2 sinasinb = cos(A+B)-cos(A-B)

sinA+sinB = 2 sin((A+B)/2)cos((A-B)/2 cosA+cosB = 2 cos((A+B)/2)sin((A-B)/2)

tanA+tanB = sin(A+B)/cosa cosb tanA-tanB = sin(A-B)/cosa cosb

ctgA+ctgBsin(A+B)/Sina sinb-ctgA+ctgBsin(A+B)/Sina sinb

The sum of the first n terms in some sequences is1+2+3+4+5+6+7+8+9+…+n = n (n+1)/21+3+5+7+9+/kloc-0.

2+4+6+8+ 10+ 12+ 14+…+(2n)= n(n+ 1) 12+22+32+42+52+62+72+82+…+N2 = n(n+ 1)(2n+ 1)/6

13+23+33+43+53+63+…n3 = N2(n+ 1)2/4 1 * 2+2 * 3+3 * 4+4 * 5+5 * 6+6 * 7+…+n(n+ 1)= n(n+ 1)(n+2)/3

Sine theorem a/sinA=b/sinB=c/sinC=2R Note: where r represents the radius of the circumscribed circle of a triangle.

Cosine Theorem b2=a2+c2-2accosB Note: Angle B is the included angle between side A and side C..

The standard equation of a circle (x-a)2+(y-b)2=r2 Note: (A, B) is the center coordinate.

General equation of circle x2+y2+Dx+Ey+F=0 Note: D2+E2-4f > 0

Parabolic standard equation y2=2px y2=-2px x2=2py x2=-2py

Lateral area of a straight prism S=c*h lateral area of an oblique prism s = c' * h.

Lateral area of a regular pyramid S= 1/2c*h' lateral area of a regular prism S= 1/2(c+c')h'

The lateral area of the frustum of a cone S = 1/2(c+c')l = pi(R+R)l The surface area of the ball S=4pi*r2.

Lateral area of cylinder S=c*h=2pi*h lateral area of cone s =1/2 * c * l = pi * r * l.

The arc length formula l=a*r a is the radian number r > of the central angle; 0 sector area formula s= 1/2*l*r

Conical volume formula V= 1/3*S*H Conical volume formula V= 1/3*pi*r2h

Oblique prism volume V=S'L Note: where s' is the straight cross-sectional area and l is the side length.

Cylinder volume formula V=s*h cylinder V=pi*r2h

1.y=c(c is a constant) y'=0

2.y=x^n y'=nx^(n- 1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'= 1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y = Tanks Y' =1/cos 2x

8.y=cotx y'=- 1/sin^2x

9 . y = arcsinx y'= 1/√ 1-x^2

10 . y = arc cosx y'=- 1/√ 1-x^2

1 1 . y = arctanx y'= 1/ 1+x^2

12 . y = arccotx y'=- 1/ 1+x^2