∵DP is the tangent of⊙ O.
∴OD⊥DP,∠ODP=90?
∴∠BDP=90? -∠ODB
∵DC⊥OB,∴∠DCB=90?
∴∠BDC=90? -∠OBD
∵OD=OB,∴∠ODB=∠OBD
∴∠BDP=∠BDC, that is, BD shares ∝∞∠CDP.
(2) If b is BH⊥DP in H, then BH=BC.
∵∠P=∠P,∴Rt△PBH∽Rt△PDC
∴BH/DC=PB/PD
∫tanP = DC/PC = 3/4,DC=6。
∴PC=8, PD of Pythagorean Theorem =10.
BH/6=(8-BC)/ 10
BH=BC=3